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Abstract— Endowing the curved surfaces of rounded vision-
based tactile fingers is essential for dexterous robotic manipula-
tion, as they offer more sufficient contact with the environment.
However, current rounded designs are constrained by a low
sensing frequency (30–60 Hz) and the need for recalibration
when adapting to new sensors due to the reliance on multi-
channel captures, which hinders their performance in dynamic
robotic tasks and large-scale deployment. In this work, we
introduce R-Tac0, a low-cost rounded VBTS engineered for
high-resolution and high-speed perception. The key innovation
is a monochrome vision-based sensing principle: utilizing a
black-and-white camera to capture the reflection properties
of the compound rounded elastomer under monochromatic
illumination. This single-channel imaging significantly reduces
data volume and simplifies computational complexity, enabling
120 Hz tactile perception. A lightweight neural network can
calibrate the sensor to achieve a depth reconstruction accuracy
of 0.169 mm per pixel, while exhibiting surprisingly good
transferability to new sensors. In experiments, we demonstrate
the advantages of R-Tac0’s rounded design by evaluating its
performance under different contact angles, its high-frequency
perception in slip detection, and its effectiveness in robotic
dynamic pose estimation.

I. INTRODUCTION

Tactile sensors are essential for robotic manipulation as
they provide precise feedback on contact states, contact
positions, and object surface characteristics, thereby allowing
robots to perform more refined and accurate operations.
In recent years, Vision-based Tactile Sensors (VBTSs) [1–
9] have advanced significantly, with ever-higher perception
resolution and ever-lower fabrication cost. Current VBTSs
are primarily designed with a flat configuration, which limits
their ability to adapt to the complex and varying contact
states when deployed at the end-effector of robotic dexterous
hands. Some research [10–14] has explored curved surface
designs for integration with robotic hand fingertips. However,
compared to non-vision-based tactile techniques [15] that
operate above 100 Hz, VBTSs usually exhibit relatively low
response frequencies, ranging from 30 to 60 Hz. This can
lead to missed detections and motion blur during dynamic
robotic tasks, significantly hindering their performances. The
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Fig. 1: The R-Tac0 Sensor. The bottom row shows a screw head
rapidly sliding across the sensor surface. The middle row shows the
image captured by the camera. The top row shows the reconstructed
geometry.

fundamental challenge lies in their dependence on multi-
channel images to compute tactile information, which ne-
cessitates the use of RGB cameras and results in increased
computational complexity and heating issues.

When deploying VBTSs on robotic multi-finger dexterous
hand, factors such as calibration process and cost in large-
scale deployments are also important considerations. The
complexity of multi-channel data requires individual calibra-
tion for each newly manufactured sensor, and this calibra-
tion necessitate specialized equipment (e.g. CNC machines).
These pose significant challenges to the efficient large-scale
deployment of VBTSs at present.

Our response to this overall challenge is the development
of R-Tac0, that leverages a monochrome vision-based sensing
principle. The proposed sensor uses a low-cost black-and-
white micro camera to capture the reflection properties
of a coated semitransparent elastomer under white-lighting
illumination, enabling high-frequency (120 Hz) tactile data
computation through single-channel captures. We have also
designed a calibration setup that can be manually printed
and installed, providing convenience for researchers and
practitioners to replicate. Additionally, due to the simplicity
of the single-channel data, we have found that the depth
calibration model based on differential images can be di-
rectly transferred to newly fabricated sensors. Therefore, R-
Tac0 is a low-cost, monochrome vision-based tactile sensor
capable of high-frequency and high-accuracy curved surface
reconstruction. Its compact form factor and potential for
cross-sensors transferability make it an ideal component



TABLE I: Comparison of the proposed R-Tac0 with the state-of-the-art curved VBTSs

Sensor Working Principle Camera Dimension
(mm)

Cost
($)

Frequency
(Hz) Configuration

TacTip [3] Learning-based Monocular RGB 40ˆ40ˆ85 - 90 Bionic fingertip
RainbowSight [16] Photometric Stereo Monocular RGB 28ˆ28ˆ50 - 30 Bionic fingertip

Omnitact [17] Photometric Stereo 5 Cameras 30ˆ30ˆ33 3200 30 Bionic fingertip
GelTip [18] Photometric Stereo Monocular RGB 30ˆ30ˆ100 - 30 Bionic finger
InSight [19] Photometric Stereo Monocular RGB 40ˆ40ˆ70 - 40 Bionic finger
AllSight [20] Photometric Stereo Monocular RGB 26ˆ28ˆ38 30+ 60 Bionic fingertip

DenseTact [12] Learning-based Monocular RGB 32ˆ32ˆ43 80- 30 Bionic fingertip
DIGIT Pinki [13] Photometric Stereo Monocular RGB 15ˆ15ˆ15 - 30 Bionic fingertip

GelStereo BioTip [21] Binocular Stereo Binocular RGB 34ˆ28ˆ34 - 60 Bionic fingertip
DTact [4] Darkness Mapping Monocular RGB 32.5ˆ25.5ˆ25.5 15 90 Non-planar

R-Tac0 (Ours) Darkness Mapping Monochrome 30ˆ30ˆ43 60 120 Bionic fingertip

for integration into standard robotic hands and multi-finger
grippers. The key contributions of this work are outlined
below:
‚ An adapted single monochrome camera with monochrome

illumination on a multi-layer compound elastomer achiev-
ing high-speed, pixel-level sensing resolution.

‚ A novel curved sensor design and an accompanying
streamlined, low-cost fabrication procedure.

‚ An easy-to-setup calibration method that leads to efficient
and high-accuracy 3D shape reconstruction.

‚ An adapted neural network calibration model that can be
effectively transferred to new sensors.

‚ Both hardware and code of R-Tac0 are open-sourced 1.

II. RELATED WORK

Current VBTSs tend to work on one of two possible
solutions: marker array-based tracking or optical reflection-
based surface reconstruction. Marker array-based VBTSs
measure distributed multi-axis force/torque information and
reconstruct surface shape by capturing the displacement
of the marker array under the deformation of the contact
module. TacTip [3], for example, uses a monocular RGB
camera combined with learning-based techniques for sensor
calibration, while GelStereo [21] uses binocular stereo vision
for marker tracking. Optical reflection-based VBTSs recon-
struct pixel-level high-resolution contact surface information
by capturing variations in the light field of the contact mod-
ule’s surface. Both approaches have led to the development
of compact VBTSs, that can be mounted and deployed on
robotic dexterous hands.

One application of VBTS is to estimate the pose of
objects during robotic grasping, manipulation, and inter-
action in dynamic and unstructured environments. Optical
reflection-based VBTSs offer the advantage of higher spatial
resolution in shape reconstruction, which results in more
accurate positional information. Among these, RGB-based
tactile sensors are now evolving from the original planar
design [2] to novel curved surface designs [12, 14, 16–20],
for improved performance in specific tasks or better align-
ment with the mechanical design of robotic end effectors.

1https://github.com/bigai-ai/PP-Tac

However, these sensors generally utilize monocular RGB
cameras [2], binocular cameras [22], or depth cameras [23] to
capture the deformation of the contact medium. Compared to
tactile sensors based on capacitive [24–26], resistive [27–29],
piezo-resistive [30–32] and magnetic [33–35] techniques, all
of which can achieve a response frequency over hundred
hertz (similar to robotic arms), VBTSs typically operate
below 100 Hz. This lower operational frequency can result in
missed detection and motion blur under dynamic contact and
significantly limits their performance in dynamic tasks when
integrated with robotic manipulators. Event-based cameras
[36] offer an alternative way of capturing high-frequency
images, but are usually prohibitively expensive (costing
thousands of dollars).

As shown in Tab. I, R-Tac0 is designed in a bionic
fingertip shape and measures high-resolution 3D geometry of
curved surfaces using white light source and a monochrome
black-and-white camera. Based on the principle of darkness
mapping through optical reflection of the semitransparent
elastomer, we proposed a novel camera-to-sensor calibration
method for rounded surfaces that eliminates the need for
specific equipment. R-Tac0 utilizes single-channel image cal-
ibration and reconstruction, which reduces data volume and
enhances processing and transmission efficiency, resulting in
exceptionally high-speed performance.

III. SENSOR DESIGN AND FABRICATION

A. Design Criteria

R-Tac0 is a miniaturized vision-based tactile fingertip de-
signed for integration into robotic end effectors and dexterous
hands. The design criteria for the sensor are as follows: 1)
Compact Form Factor: This allows the sensor to be in-
stalled in constrained spaces such as the fingertips of robotic
hands; 2) Round Shape: The bionic fingertip design provides
full-coverage tactile perception, to enable in-hand object pose
estimation and manipulation; 3) High-Resolution and High-
Frequency Perception: A high-speed camera has to capture
distinct pixel-level surface deformations for precise shape
reconstruction. 4) Ease of Reproduction: Sensor compo-
nents should be readily accessible, easily fabricated, and
cost-effective. The assembly process should be thoroughly



Fig. 2: R-Tac0 Sensor Design. (a) Exploded view of the sensor. (b)
Schematics diagram of the four key components in the assembled
R-Tac0 sensor.

described to facilitate robust reproduction by non-specialist
developers.

B. Sensor Fabrication

As shown in Fig. 2, the R-Tac0 sensor is composed of
four key components: the contact module, the illumination
system, the camera, and the sensor shell.

1) Contact Module: To ensure clear and distinct con-
tact deformation, this module is composed of five layers,
arranged as follows, from the innermost to the outermost:
internal filling gel, rigid transparent shell, transparent gel
layer, translucent gel layer, and black coating layer.

Internal filling gel: This layer has two functions. Firstly,
being transparent, it diffuses the light spot from the LED,
as shown in Fig. 3, in which a clear distinction is evident
between captures with and without the filling. Secondly, once
cured, it acts as a glue, securing the rigid transparent shell to
the sensor shell. The gel used is Smooth-on Solaris, mixed in
a 1 : 1 weight ratio (Part A and Part B), degassed in a vacuum
chamber and cured at room temperature for approximately
24 hours.

Rigid transparent shell: This layer provides rigidity to
the sensor structure during contact while allowing clear visi-
bility of the elastomer deformation, and preventing delamina-
tion or tearing of the elastomer [16, 20]. Several methods can
be used to manufacture this shell, including stereolithography
(SLA), 3D printing with transparent materials [20] and
casting with transparent epoxy resins [16]. In this study, off-
the-shelf test tubes are utilized, which can be customized
to the required thickness, radius, and height. Compared to
those produced by 3D printing and casting techniques, glass
tubes offer excellent clarity and an ultra-smooth surface,

Fig. 3: Effect of Internal Filling Gel. Image captured by R-Tac0
sensor, with (right) and without (left) the internal gel layer. The
layer helps eliminate the light source spots.

eliminating the need for post-processing. Prior to casting the
soft transparent gel layer, the shell is primed with a clear
silicone adhesive - we use Dow Corning PR1200 RTV.

Transparent gel layer: This layer also serves two pur-
poses. Firstly, it provides structural support between the
translucent gel layer and the rigid transparent shell, as shown
in Fig. 2. Secondly, it facilitates light diffusion, promoting
more uniform illumination and mitigating potential reflection
issues that can occur when light passes through air or other
media [4]. We used stiff and durable PDMS - Dow Corning
Sylgard 184 (Shore hardness 50A) - which offers both good
optical transparency and resistance to tearing. The layer is
fabricated through a two-piece molding, as shown in Fig. 4.
The mold is created by installing the test tube into 3D-printed
apparatus and pouring in Smooth-on MoldStar 30 - resulting
in a smooth surface. A release agent (Mann Ease Release
200) is then sprayed inside the mold, and degassed PDMS
(a 10 : 1 mixture of Part A: Part B) is poured in, with the rigid
shell press-fitted for casting. After curing for approximately
24 hours, the transparent gel layer, which bonds to the shell,
is carefully removed from the mold.

Translucent gel layer and black coating layer: These
two layers are designed to reflect internal light with varying
brightness dependent upon contact. Taking into account the
trade-off between fineness and depth in shape reconstruc-
tion [4], the thickness of the translucent gel layer is set
to 1.5mm based on in-depth experimentation. It is worth
noting that the translucent layer also determines the sensing
range of the sensor. We use translucent silicone Smooth-on
Ecoflex 00-30, which provides suitable hardness, excellent
tensile strength. The black coating layer not only absorbs
internal light and prevents interference from ambient light,
but also serves as a wear-and-tear resistant protective layer
with superior durability. To fabricate these layers, we use
the same two-piece molding as described above. Firstly, a
black mill-resistant mixture (Yonglihua Technology PTG-
501) consisting of silicone oil, catalyst, and thinner in a 100 :
3 : 500 ratio is prepared and sprayed onto the inner surface
of the mold. The degassed silicone (a 1 : 1 mixture of Part A:
Part B) is then immediately poured in. The transparent gel
layer is then press-fitted for casting, as shown in Fig. 4. After
curing at room temperature for approximately 24 hours, the
final bonded contact module is carefully removed from the
mold.

2) Illumination System: Because of the optical properties
of the contact module, a simple white LED ring is used
to illuminate the sensor. Eight evenly spaced LUXEON
2835 4000K white SMD LEDs with corresponding 470



Fig. 4: Fabrication Procedure of R-Tac0 Sensor. Five main steps are depicted: (a) 3D printing the required parts. (b1) Fabricating
and assembling the illumination system. (b2) Casting the molds. (c) Casting the contact module using two-piece molding technique. (d)
Installing the camera and sensor shell.

Ohm resistors are soldered onto a customized annular PCB.
The PCB is press-fitted into the sensor shell, and a laser-
cut double-sided frosted diffuser is installed 10mm above
the PCB to achieve effective light diffusion. The emitted
light passes through the diffuser into the transparent and
translucent layers to illuminate the black layer, which is then
captured by the camera.

3) Camera: To achieve a compact design with a high re-
sponse frequency, R-Tac0 employs a black-and-white CMOS
OV9281 global shutter camera with a 1600 wide field of view
(FoV) lens. The camera works at a frame rate of 120 fps,
with 640ˆ480 resolution outputs. The camera module is
secured to the sensor base with bolts and connected to the
microcontroller, which is connected to the desktop via USB
to stream single-channel MJPG format data. The exposure is
set to manual mode to obtain consistent and stable output.

4) Sensor Shell: The two-piece black shell secures the
camera, LED, diffuser, and contact module while also ab-
sorbing stray light, effectively guiding the lighting path, as
shown in Fig. 2. We choose black PLA material to 3D print
the sensor shell and connect the two pieces with small bolts.

Multiple R-Tac0 sensors are fabricated in this work. The
overall dimensions of the sensors are 30mmˆ30mmˆ

43mm, and its weight is 35g. The total cost of the sensor is
around $60, with the camera module (including the micro-
controller) accounting for the majority of the expense at
$36. The contact module including molds is $15, the LED
ring with the diffuser is $6, and the sensor shell is $2. The
entire fabrication process takes less than five days (most of
which is taken up by silicone curing), which facilitates rapid
reproduction and deployment in robotic applications.

IV. SENSOR CALIBRATION AND SHAPE
RECONSTRUCTION

In this section, we describe procedures for (1) calibrating
the camera, which is a prerequisite of sensor shape recon-
struction; and (2) performing shape reconstruction based on
camera model and image observations. For the camera’s cal-
ibration, we aim to obtain parameters including the camera’s
intrinsic parameters (M), distortion coefficients (D), and
extrinsic parameters (R and T). As detailed in Sec. IV-A.

Next, we aim to accomplish 3D reconstruction based on
the camera model obtained. One challenge associated with

Fig. 5: Camera Calibration. We calibrate the intrinsic parameters
and distortion using a calibration board. We 3D print a dome
structure with predetermined holes, and by inserting pins at known
coordinates, we are able to obtain pair-wise 3D and 2D points. The
camera pose is then obtained using OpenCV’s solvePnP function.

our sensor design is the curved sensor surface, which intro-
duces varying curvatures across different regions. This incurs
a generalization issue when relying solely on light intensity
to infer surface geometry (such as using methods like linear
regression based on color [4] or look-up tables [2]). To
address this, we developed a robust neural network model,
as detailed in Sec. IV-B.

A. Camera Calibration

As a prerequisite for 3D reconstruction, the camera model
needs to be fully determined. This involves: (1) obtaining the
camera’s intrinsic parameters M and distortion coefficients
D using a checkerboard calibration method in OpenCV [37],
and (2) determining the camera’s position relative to the
sensor surface (extrinsic parameters). Since it is intractable
to attach a checkerboard pattern to the dome’s inner surface,
we propose a novel calibration approach that aims to obtain
the sensor’s extrinsic parameters. Specifically, we used a
3D-printed dome structure which is designed with holes at
known locations. This allows pin insertions that make contact
with the sensor at known spatial coordinates px, y, zq. Simul-
taneously, we recorded the pixel values pu, vq of each contact
point. By using multiple pairs of 3D contact points and
corresponding camera observations, the extrinsic parameters
of the camera were calculated by solving the Perspective-n-
Point problem.

pu, vq “MDrR |T spx, y, zq (1)



Fig. 6: Groundtruth Capture. Above left: We 3D-print semi-
dome-shaped patterns with various internal protrusions. By pressing
one protruded pattern and one empty pattern onto the R-Tac0, we
completed capturing one data sample. Correspondingly, the ground
truth depth is derived using the known camera parameters and the
protrusions geometry. Right: By sampling and stitching together
the images collected from different sides, we can quickly generate
a large synthesized dataset using very few protruders.

Finally, we validated the accuracy of the obtained param-
eters by reprojecting the 3D contact points onto the camera
image, which showed satisfactory alignment (See Fig. 5
bottom right).

B. Sensor Calibration

Prepare Training Data. Using the calibrated camera,
we can generate depth maps relative to the camera coordi-
nate by projecting arbitrary geometry, along with capturing
corresponding grayscale images. However, collecting such
pair-wise data individually is highly time-consuming. To
address this, we have designed an efficient data collection
method that significantly improves the process, achieving
an exponential increase in data collection efficiency. The
overall pipeline for this is shown in Fig. 6. Specifically, we
3D-printed a series of semi-dome-shaped components with
internal protrusions. Each semi-dome can be combined with
one empty semi-dome which has no protrusions inside. Since
the geometry of these protrusions are known, we can directly
establish the relationship between the camera’s image ob-
servations and the corresponding ground-truth depth maps.
After obtaining each pair of data, we rotate the combined
two semi-domes by 180 degrees to generate another set of
“mirrored” data from the flipped configuration. Benefiting
from the use of grayscale images, this design enables a
data augmentation technique where arbitrary pairs of left
and right image observations can be stitched together, which
significantly increases image diversity as shown in Fig. 6
(right). For example, with just 100 3D-printed patterns (semi-
domes), this approach can yield 100ˆ100“ 10, 000 training
samples, without using a CNC machine [12, 16, 38].

Depth Estimation Network. To take advantage of the
camera’s fast framerate, we propose a lightweight network
structure to ensure high computational speed (see Fig. 7).
The network’s input is the differential image, calculated by
subtracting a reference image (captured in a contact-free
state) from the currently captured image. We then employed
a two-layer Convolutional Neural Network (CNN), followed
by a Multi-Layer Perceptron (MLP) to predict the differential

Fig. 7: Pipeline of Depth Reconstruction. To achieve high
frequency and enhance the generalizability of our system, we
employed a lightweight neural network for depth reconstruction.
We input the differential image into a two-layer CNN, after which
a two-layer MLP is utilized to identify the differential depth corre-
sponding to each pixel. On an Nvidia RTX 4090, the computation
time required for each frame is just 3.5ms.

depth for each pixel. The training can be formulized as

∆pred “MLP pCNNpIcapture ´Iref qq, (2)

L“
1

n

n
ÿ

i“1

p∆i
pred ´∆i

gtq
2, (3)

where I denotes the captured gray-scale image, ∆ denotes
the differential depth map and n is the number of pixels. The
network was trained by optimizing a Mean Squared Error
(MSE) loss between the predicted differential depth and the
ground truth differential depth. We obtained the complete
surface depth map by combining the differential depth map
with the sensor reference surface depth, which is projected
using the camera parameters from Sec. IV-A based on the
known sensor geometry.

Here we also provide the details of our proposed network
architecture. The first CNN layer consists of 64 channels
with a kernel size of 7, while the second layer comprises
128 channels with the same kernel size. The first layer of
MLP reduces the feature dimension of each pixel to 64, and
the second MLP layer further reduces the 64 dimension to
1.

C. Generalizability to New Sensors

For previous sensors with curved surfaces, the generaliz-
ability of learned depth estimators to new sensors remains
an underexplored issue [12, 16, 38]. In this work, we address
this generalizability challenge by exploring two solutions: (1)
incorporating training data from multiple sensors, gathering
45,000 pairs of training data from five sensors; and (2)
applying a fine-tuning technique after initial training. The
results of these techniques are presented in Sec. V.

The depth reconstruction network was trained on an
Nvidia RTX4090 for 10 epochs, taking around two hours.
We also noticed the inference speed is ultra-fast. It takes
only 3.5ms for each frame of image.

V. EXPERIMENTS

In this section, we evaluate the R-Tac0 sensor by perform-
ing a series of experiments. These include: (1) evaluating
R-Tac0’s performance in shape reconstruction quantitatively,



Fig. 8: Reconstruction Results. We showcased the prediction
results of normals, depth, and point cloud using an unseen sensor.

Fig. 9: Quantitative Results of Depth Reconstruction. We visual-
ized the error distribution for all samples from the 3D reconstruc-
tion. The “Trained Sensor” refers to the sensor used for training
data collection; the “New Sensor” is one that was not seen during
training, and the “Fine-tuned New Sensor” incorporates the fine-
tuning technique for an unseen sensor.

and qualitatively; (2) evaluating R-Tac0’s high frequency on
slip detection; (3) comparing R-Tac0 and a flat-shaped tactile
sensor across varying contact conditions; (4) demonstrating
R-Tac0’s performance in dynamic pose tracking on its curved
surface.

A. Results of Depth Reconstruction

First, we conducted experiments to demonstrate the per-
formance of 3D reconstruction. Qualitative results are shown
in Fig. 8, where various text patterns were pressed onto the
sensor’s surface. The results illustrate that the reconstruction
performs well. It can be observed that all predicted depths,
derived normals, as well as point clouds, have a clear
correspondence with the input and the ground truth depth.
Notably, all experiments were conducted using a new sensor
not used during model training, highlighting the model’s
ability to generalize successfully to new sensors.

Next, we quantitatively analyzed the model’s ability to

generalize to new sensors excluded from training (Fig. 9).
This was accomplished by employing test patterns with
unseen, yet known geometries to indent the sensor surface.
As a baseline, testing on a sensor included in the training
set produced the best results (with a mean L1 error of
0.169mm and 75.78% of error samples below 0.1mm). We
then compared this baseline with a test conducted on a sensor
unseen during training. This experiment resulted in a mean
L1 error of 0.328mm, with 47.76% of error samples below
0.1mm. Finally, we fine-tuned the model using 100 data
samples collected from this new sensor, spanning a total of
5 epochs. After fine-tuning, the mean L1 error decreased
to 0.271mm, with 71.32% of errors below 0.1mm. This
performance is comparable to that of the sensor used in
training, demonstrating the effectiveness of the fine-tuning
technique. It is noted that the maximum errors arise from
position shifts of tiny surface defects introduced during the
manufacturing process.

B. Evaluation on High-Frequency: Slip Detection

To assess the frequency performance of the sensor, a com-
parative analysis was performed to evaluate slip detection
efficacy across multiple frame rates. As illustrated in Fig. 10,
the R-Tac0 was mounted on a Franka Research 3 (FR3)
robotic arm, and a weighted object was released from a fixed
height to induce a consistent initial slip velocity on a ruler
positioned at a predetermined location. The slip detection
mechanism was implemented through a simplified algorithm:
following the tactile sensor’s initial contact establishment
with the ruler, any detectable variations in the capture were
classified as slip occurrences, thereby prompting the FR3
robotic arm to exert a controlled downward force towards
the rule. Upon detection of slip, the magnitude of ruler dis-
placement was quantitatively measured to assess the impact
of different frame rates.

The sensor’s frame rate was systematically configured to
120, 90, 60, and 30 fps, while the initial velocity of the
ruler was maintained at 2 m/s through precise adjustment
of the string length. For each frame rate, 50 experimental
trials were conducted, yielding the following average ruler
displacement measurements: 120 fps : 3.1˘1.2cm, 90 fps :
3.8˘1.3cm, 60 fps : 5.1˘2.3cm, 30 fps : 8.2˘3.2cm .
The experimental results demonstrate that higher frame rates
significantly enhance the sensor’s responsiveness to slip
detection, enabling faster triggering of corrective force to
mitigate slip. This effect becomes particularly pronounced
at elevated slip velocities, where the system’s rapid response
capability is crucial. These experimental findings of slip
detection underscore the importance of VBTS’s frame rate
in dynamic robotic tasks.

C. Comparative Analysis of Curved and Flat Sensor Perfor-
mance Across Varying Contact Angles

To evaluate the advantage of the curved shape, a compar-
ative experiment was performed to assess its performance
with a flat tactile sensor [39] under varying contact angles.
As illustrated in Fig. 11, both sensors were mounted on



Fig. 10: Experiment Setup for High-Frequency Evaluation. For
each trial, the ruler was positioned at the same initial location,
and the robotic arm was controlled to ensure the tactile sensor to
maintain a consistent position. A weighted object was released from
rest at a predetertmined height, undergoing free-fall motion, while
the velocity of the ruler was regulated by adjusting the length of the
string. Upon detection of slip, the tactile sensor triggered the robotic
arm to apply a controlled downward force to bring the ruler to a
halt. By comparing the displacement of the ruler under different
frame rates, the impact of sensor’s frame rate on slip detection
efficacy was evaluated.

Fig. 11: Varying Contact Conditions Applied to Curved and
Flat Sensors. (a) Pressing the R-Tac0 sensor against the tabletop
at varying angles. (b) Pressing the flat tactile sensor [39] agianst
the tabletop at varying angles.

the end-effector of a Franka Emika FR3 robotic arm. The
robotic arm was controlled to position the tactile sensors
to make contact with the table at angles of ´40˝, ´20˝,
0˝, 20˝, and 40˝, while maintaining a consistent contact
depth for each interaction. For each angle, 20 trials were
conducted, and the maximum depth readings from the sensor
were recorded. The results demonstrate that the curved
sensor consistently and accurately delivered stable readings
across all contact angles. However, the flat sensor exhibited
limitations in maintaining reliable readings in this case.
When the flat sensor was in parallel contact with the table,
it failed to produce repeatable measurements due to the
deformation of its entire surface. Furthermore, at contact
angles exceeding 40˝, the flat sensor’s limited contact area
resulted in ineffective readings. These experimental findings
underscore the superior adaptability of the curved sensor to
diverse contact conditions.

D. Dynamic Pose Tracking on Curved Surface

Lastly, we demonstrate that the R-Tac0 sensor is highly
suitable for dynamic robotic tasks requiring high resolution
and precision. To showcase this, we applied Iterative Closest
Point (ICP) [40, 41] to track the pose of a test sphere pressed
on the sensor’s surface. The tracking results are shown in
Fig. 12. Using Open3D [42], we visualized the sphere’s pose

TABLE II: Quantitative Results of Depth Readings from Curved
and Flat Sensor Across Varying Contact Angles. The robotic
arm was controlled to position the sensor to make contact with the
table at angles of ´40˝, ´20˝, 0˝, 20˝, and 40˝, with a consistent
contact depth of either 1 mm or 2 mm. For each combination of
contact angle and depth, 20 trials were conducted, and the average
and standard deviation of the maximum detected depth values from
the sensor were calculated. For the flat sensor, no readings were
obtained when the contact angle reached 40˝, and these instances
were recorded as N/A.

(mm) ´40˝ ´20˝ 0˝ 20˝ 40˝

Curved + 1mm 1.13˘0.12 1.08˘0.10 1.07˘0.11 1.10˘0.12 1.09˘0.09
Flat + 1mm N/A 1.41˘0.39 0.93˘0.32 1.36˘0.29 N/A

Curved + 2mm 2.21˘0.14 2.08˘0.10 2.14˘0.13 2.05˘0.07 2.12˘0.11
Flat + 2mm N/A 3.26˘0.45 2.16˘0.31 3.02˘0.47 N/A

Fig. 12: Dynamic Pose Tracking. The left figure showcased
pressing a small ball onto R-Tac0’s elastomer. The right figure
showcased the predicted ball location using ICP and reconstructed
geometry.

on the curved surface in real time, highlighting the curved
sensor’s high performance in dynamic pose estimation.

VI. CONCLUSION & FUTURE WORK

This paper presents R-Tac0, a compact, low-cost vision-
based tactile sensor that utilizes a single monochrome cam-
era and a compound multilayer elastomer to achieve high-
resolution and high-frequency curved surface reconstruction.
To achieve this, we proposed an innovative calibration pro-
cess that solely relies on 3D-printed setups, eliminating
the need for additional costly machinery. R-Tac0 lever-
ages a lightweight depth reconstruction network, achieving
fast response times and robust generalization performance.
Through a series of experiments, we demonstrate that the
proposed sensor achieves accurate 3D reconstruction and can
be transferred to new sensors. We validated the importance
of high-frequency signals from the sensor in dynamic robotic
tasks through slip detection. Additionally, we demonstrated
the high adaptability of the curved shape under varying
contact conditions through experiments involving contact at
different angles. Finally, we showcased the application of the
curved sensor in high-speed dynamic object pose tracking.

Future work will focus on deploying R-Tac0 sensors
on robotic end-effectors, such as multi-finger grippers and
hands, to perform various tasks. We will also explore solu-
tions for deploying algorithms on robot onboard computers
with limited resources, as well as exploring force perception.

Acknowledgement: We thank Mr. Mish Toszeghi from
QMUL for proofreading.
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