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Abstract— Equipped with Large Language Models (LLMs),
human-centered robots are now capable of performing a wide
range of tasks that were previously deemed challenging or
unattainable. However, merely completing tasks is insufficient
for cognitive robots, who should learn and apply human
preferences to future scenarios. In this work, we propose a
framework that combines human preferences with physical
constraints, requiring robots to complete tasks while consid-
ering both. Firstly, we developed a benchmark of everyday
household activities, which are often evaluated based on specific
preferences. We then introduced In-Context Learning from
Human Feedback (ICLHF), where human feedback comes
from direct instructions and adjustments made intentionally
or unintentionally in daily life. Extensive sets of experiments,
testing the ICLHF to generate task plans and balance physical
constraints with preferences, have demonstrated the efficiency
of our approach.

I. INTRODUCTION

Equipping robots, especially service robots, with the abil-
ity to consider personalized human preferences is a chal-
lenging task. On the one hand, this is due to the subjectivity
and diversity of human preferences, and on the other hand,
the physical constraints of the objective world limit the
realization of preferences. Imagine a scenario where robots
tidy up a table, as shown in Fig. 1, where humans expect the
robot to tidy up according to their preferences. Therefore, it
is inappropriate to consider preferences without regard to
physical constraints, or physical constraints only, but only
to take both into account, i.e., behaving in accordance with
human preferences while adhering to physical constraints.

One of the challenges is to learn human preferences,
with existing methods mainly including learning by pairwise
comparison [1, 2] and learning by LLMs [3–5]. The former
typically simplifies complex preferences into a ranking func-
tion, which assigns a partial order to multiple outputs of the
model. Such methods are easy to implement and have numer-
ous applications in recommendation systems [6, 7], human-
robot interaction [8], natural language processing [9, 10], and
more. However, they require collecting a large amount of
annotated data from humans [11–13], so what is learned
reflects the shared preferences rather than individualized
preferences [14]. Additionally, this form of comparison it-
self also sacrifices the diversity of human preferences. The
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Fig. 1: An example task of robots tidying up a table with
human preferences. (a) The messy table that needs to be cleared.
(b) Considering human preferences without regard to physical
constraints would result in unrealistic behavior. (c) Considering
physical constraints alone would fail to meet human expectations.
(d) Example of human preferences. (e) Only by balancing both,
that is, behaving following human preferences while adhering to
physical constraints, can the task be satisfactorily completed.

latter arises from the powerful text processing and common-
sense reasoning capabilities exhibited by LLMs trained on
massive datasets [15, 16]. For example, TidyBot [3] utilizes
the summarization capabilities of LLMs to infer human
preferences for tidying up a room, while DROC [4] learns
human preferences from online human language corrections.

Another major challenge is the integration of learned
human preferences and physical constraints. Physical con-
straints manifest in both task planning [17] and motion
planning [18] of robots. In this paper, we only consider
the physical constraints of the task planning, and the human
preferences associated with it only involve the outcomes of
planning. Although it is a subset of the original problem, it
remains a challenging task. Due to the inherent, universal,
and omnipresent nature of physical constraints, they are
typically predefined in the form of hand-written rules, such
as the domain description in Planning Domain Definition
Language (PDDL) [19, 20], or environment modeling in
reinforcement learning [21]. On the other hand, personalized
human preferences are often unpredictable, ambiguous, and
diverse. The heterogeneity between these two demands an
appropriate way of combining them [22].

Traditional task planning methods, such as those based on
PDDL or scene graphs, require converting preferences into
a form recognizable by planners, such as preference predi-
cates [23] or constraints [24]. However, this conversion often
sacrifices the diversity of preferences. Another approach is
to use LLMs to convert text-based human preferences into a
reward function in reinforcement learning [5, 25] and learn



physical constraints through a large number of trial-and-
error. However, the intrinsic nature of reinforcement learning
requires human preferences, serving as reward signals, to be
strongly goal-oriented for specific tasks [26], thus making it
less suited for learning diverse preferences.

To address the aforementioned issues, we first proposed a
set of household benchmarks, collecting tasks with strong
personal preferences. Then, we introduced the In-Context
Learning from Human Feedback (ICLHF) algorithm, which
aims to combine LLMs’ preference learning capability with
the ability to learn from feedback. In this approach, the LLM
functions like a reinforcement learning policy model, learn-
ing human preferences through in-context learning [27, 28].
Feedback is provided in textual form, combining physical
constraints and human preferences. Finally, the structure like
Reinforcement Learning from Human Feedback (RLHF) of
the algorithm allows for balancing physical feedback and
preference feedback to generate suitable solutions. Mean-
while, the employment of in-context learning avoids training
an excess of parameters for LLMs, maximizing its infer-
ential prowess as much as possible, thus enabling in-situ
personalized preference learning. To achieve generalization,
learned human preferences can be easily combined into a
hierarchical structure, with higher-level preferences being
more adaptive. Considering the powerful capability of tra-
ditional algorithms in handling intricate manipulation tasks,
we integrated a customized version of POG [29], an algo-
rithm for efficient sequential manipulation planning on scene
graphs, to enhance the preliminary plans generated by the
LLM planner. Consequently, the final task plan incorporates
more comprehensive geometric spatial information, thereby
ensuring seamless transitions to the motion planner.

We conducted numerous experiments to validate the ef-
fectiveness of the ICLHF algorithm in learning human
preferences and combining them with physical constraints.
Finally, real robot experiments demonstrate the validation of
the approach on robotic hardware. The contribution of our
work can be summarized as follows:

‚ We present a benchmark on household activities whose
evaluation is based on personalized preferences.

‚ We introduce the ICLHF algorithm that learns human
preferences in situ and combines them with physical
constraints to accomplish the task.

‚ We conduct large-scale experiments to validate the ef-
fectiveness of ICLHF, and real-world robot experiments
to demonstrate its practicality.

A. Related Works

1) LLMs for Robots: As LLMs trained on massive
amounts of data exhibit powerful common-sense reasoning
capabilities [15, 16], a significant amount of work focuses on
utilizing them for robotic task planning [25, 30, 31]. These
works can be categorized based on the format of LLMs’
output into two types: action primitives based [3, 30] methods
and code-based [5, 25, 31] methods. Methods based on action
primitives guide LLMs to generate corresponding sequences
of action primitives based on different task prompts, while

methods based on code aim to leverage the programming
abilities of LLMs by providing specific API instructions to
output execution plans [31] or objective functions [5, 25]
represented in code format.

2) Task Planning: Traditional task planning in robotics
mainly includes planning with symbols [23, 24] and planning
with scene graphs [29, 30, 32]. The utilization of symbols for
robotic task planning derives from earlier planning problems,
where algorithms such as PDDL [19, 20] standardize artifi-
cial intelligence planning. 3D scene graph [33, 34] emerges
as a formidable tool for scene modeling and makes many
graph operations possible due to the graph structure, such
as graph edit distance [29] and graph neural networks [35].
However, it also has some issues whereby even small en-
vironments can contain hundreds of objects and complex
relationships between them [36].

B. Overview

We organize the remainder of this paper as follows. Sec-
tion II describes the underlying framework and the ICLHF al-
gorithm constructed on it. Section III presents the benchmark
used in this paper, and exhaustive experiments are conducted
on both simulation and real environments to validate the
effectiveness of the ICLHF algorithm. Finally, we conclude
the paper in Section IV.

II. METHOD

A. Framework

The problem we consider is similar to the traditional
Markov Decision Process (MDP), where the state space S
encompasses all possible states of objects, including poses,
intrinsic properties, and more. The action space A consists
of predefined action primitives, such as group, put on, and
slice. Since it is often challenging [5, 25] to accurately
describe physical constraints and human preferences using
the traditional scalar reward function R : S ˆ A Ñ R, we
employ a novel text-based form of reward to integrate both,
defined as R˚ : S ˆ A Ñ Ftext. In the simulation, physical
constraints are typically provided by simulators, whereas in
the real world, constraints and preferences are provided by
human observers either in the form of speech (which can be
converted to text) or directly as text.

Specifically, environmental feedback consists of two parts.
First is the execution of actions, for example, any place-
ment actions within the container before it is opened are
considered failures. Second is the consequences of actions,
such as collisions or collapses caused by the operation.
Based on such feedback, an intelligent agent can generate
plans with higher physical feasibility. Human feedback also
includes two parts. First is direct preference instructions from
humans regarding unsatisfactory aspects of the execution
process, demanding the agent to respond promptly and
generate plans that align with human preferences. Second
is the adjustments made by humans in daily life based
on their preferences, which are more implicit compared
to the first type of feedback, sometimes even stemming
from subconscious human behavior. Inductive learning of
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Fig. 2: Dual loop of ICLHF. (a-b) In the upper loop, humans give instructions or adjust the plan according to their preferences, which
are then analyzed and integrated by the LLM into human preferences. (b) In the lower loop, LLM receives the initial state and task
instruction as input and outputs the object attributes and relationships between objects represented by the scene graph. (c) Then, the
pose synthesizer processes this scene graph and generates specific positions and rotations for the object. (d) Finally, the motion planner
generates the robot’s motion trajectory based on this information. After executing in the environment, the robot receives physical feedback,
which is then injected into the LLM planner for subsequent planning. The whole process continues until the generated plan conforms to
the physical constraints and human preferences.

these preferences poses a challenging task. Traditional al-
gorithms [23, 24] lack effective learning methods for this,
but LLMs can summarize corresponding human preferences
and apply them to subsequent tasks [3].

B. ICLHF

We propose the ICLHF algorithm, which is capable of
learning human preferences in situ and combining them with
physical constraints to accomplish tasks. It consists of two
parts: the LLM planner and the object pose synthesizer.
Taking task instructions and initial states as input, the LLM
planner performs in-context learning based on correspond-
ing prompts and recorded human preferences, and outputs
execution sequences along with the goal scene graph. The
output scene graph is a rough version, representing objects
and their attributes with nodes and carrying the relationships
between objects with edges. The pose synthesizer then takes
this goal scene graph as input and further synthesizes more
specific object information, such as position and rotation,
based on object attributes and relationships between objects.
Additionally, the pose synthesizer can conduct a preliminary
physical feasibility analysis on scene graphs, such as object
collisions, and provide feedback on the physical aspects.

Throughout the entire process, humans can provide mod-
ification suggestions or make adjustments based on their
preferences at any time. The algorithm can capture these

human preferences and apply them to subsequent planning.
Additionally, to utilize human preferences more efficiently,
the algorithm performs periodic introspection to extract
higher-level human characteristics from lower-level human
preferences, typically when reaching the maximum context
length of LLMs. The overall process is illustrated in Fig. 2.

1) LLM as Task Planner: The task planner adopts a
top-down processing logic. Given the textual description
of objects, first classify the objects. Assuming this step
generates N categories, a total of N ` 1 directed acyclic
graphs will be obtained. Objects of the same category are
considered as nodes within the same graph, while these N
categories themselves form a graph with N nodes.

Next, consider the placement between groups, mainly
involving actions of put on and put near, as well as op-
tional orientation indications, which will provide a global
placement for the N categories divided in the previous step.

Finally, groups with more than two objects will undergo
more detailed operations, with the types varying according
to tasks. Taking tidying up a table as an example, operations
will include put on, put in, open, close, and so on. These
operations either alter the relationship between objects, such
as put on and put in, or change the state of a single object,
like open and close.

In each of the above processes, physical feedback and
preference feedback can be promptly injected to influence



subsequent planning. With physical feedback, the agent can
modify parts of the plan that are not executable or unrealistic,
while preference feedback will affect future planning. During
the modification process, potential human preferences also
need to be considered. Therefore, unlike the error han-
dling mechanism proposed in DROC [4], which restricts
retrievable history to four categories, we track the source
of relationships in the scene graph that lead to errors and
use them together with the relationships of neighbors as
contextual input to regenerate an overall plan that better
aligns with human preferences. Additionally, when the stored
preferences reach the maximum token length allowed by
LLMs, the planner will conduct a profile, aiming to extract
more generalized features from trivial preferences.

2) POG as Pose Synthesizer: In contrast to the top-down
logic of the task planner, the pose synthesizer adopts a
bottom-up approach. It first analyzes the placement of objects
within each group, then treats them as a whole to generate a
total of N placement configurations for all groups based on
their orientation and relationships with other groups.

Specifically, for the symbolic relationships generated by
the task planner, we use stochastic optimization in POG [29]
to determine the geometric information of the objects. To
reduce computational complexity, the oriented bounding box
is used instead of objects during calculations, and then the
results are mapped back to the respective objects. In addition
to the original objective function used in POG [29], the
following additional objectives have been added.

Lmanhattan :“
ÿ

lPG
1|l|ą1

ÿ

m,nPl

}m ´ n}1 (1)

Larea :“ Lmanhattan `
ÿ

lPG
1|l|ą1Rpxlq ¨ Rpylq (2)

Lorth :“ σ2pθq (3)

where l denotes the depth of nodes in the scene graph and
1 denotes the indicator function. The m,n in Eq. (1) denote
the 3D coordinates of nodes. In Eq. (2), R denotes the range,
i.e. Rpxq “ xmax ´ xmin, and x, y denote the x-axis and y-
axis coordinates of the node, respectively. In Eq. (3), θ is the
intersection angle between the main axis of symmetry and
the x-axis for each object.

Eq. (2) is primarily aimed at reducing the distance be-
tween objects and consists of two parts. Firstly, it constrains
the distance between every two objects using Manhattan
distance, as Eq. (1) shows, which, combined with Eq. (3),
can make the arrangement of objects neat and in line with
human preferences. Secondly, it constrains multiple objects
to make them more compact as a whole. Eq. (3) aims to
reduce deviations between the main axes of symmetry of
objects. These metrics reflect more fundamental and general
preferences, which, when combined with individual unique
preferences, can model human preferences from multiple di-
mensions. Additionally, we extract objectives from POG [29]
regarding stability and collisions to form quantitative metrics.
It is worth noting that the stability and collision functions can
also provide preliminary physical feedback.

III. EXPERIMENTS

Our experiment needs to answer the following questions:
1) Why choose in-context learning to learn human prefer-

ences, and what advantages does it have over directly
using LLMs for learning?

2) Can the LLM planner generate more detailed infor-
mation based on the symbolic relationships between
objects, such as object positions and rotations?

3) Can the ICLHF plan in a way that aligns with prefer-
ences while also adhering to physical constraints, and
can it generalize to new scenarios with minimal effort?

4) How practical is the ICLHF algorithm, and can it be
applied to real robots?

We conducted numerous experiments to answer the afore-
mentioned questions. The remainder of this section is or-
ganized as follows. First, in Section III-A, we introduce
a benchmark comprising common household tasks, each
requiring specific preferences as evaluation criteria. Then,
in Section III-B, experiments are conducted to validate the
ability of in-context learning as a preference learner. Follow-
ing that, Section III-C compares the ability of LLMs and the
traditional algorithm, namely POG [29], in generating object
geometric information. Section III-D carries out extensive
experiments to analyze the ability of ICLHF to balance
physical constraints and human preferences, as well as its
generalization. Finally, Section III-E validates the effective-
ness of ICLHF in real robot environments. Throughout the
experiments, we utilized GPT-3.5 Turbo as the LLM planner.

A. Benchmark
From Behavior-1K [37], a collection of household ac-

tivities matching human needs based on a large number
of surveys, we filtered out four categories of tasks, the
execution of which typically involves distinct human prefer-
ences, namely tidying up, cleaning, packing/unpacking, and
loading/unloading, as shown in Fig. 3.

Fig. 3: Our benchmark covers four common types of tasks in
household chores, the execution of which typically involves distinct
human preferences, namely tidying up, cleaning, packing, and
loading.

There are a total of 15 activities and 22 different scenarios
in the benchmark, involving a total of 1596 objects. Table I
shows the attributes of tasks in different types, each obtained
by averaging and rounding across all available scenarios.



TABLE I: The four types of activities and their attributes

Activity Type Objects States Actions Amount
tidy 14 10 10 150

clean 21 16 12 100
pack/unpack 19 11 11 80
load/unload 17 12 11 80

For each type of task, we provide default human pref-
erences. For instance, the human preference is “I prefer
everything to be laid flat on the table rather than stacked
together” for the task of tidying up tables. Each preference is
carefully selected to ensure that there is at least one solution
that aligns with the preference in the current context, while
also being as general as possible to influence other types of
tasks in specific scenarios.

Additionally, the benchmark considers the impact of pref-
erences on the physical difficulty of task completion, im-
plicitly increasing or decreasing constraints by adjusting the
physical contact between objects. For example, the default
preference for tidying up tables avoids stacking objects,
making it easier to execute, while the default preference
for unloading cars suggests placing objects in the same
container, greatly reducing the feasible domain of the task.
The evaluation of human preferences consists of two parts:
subjective scoring and objective scoring. The subjective scor-
ing is performed by selected participants, who rate the final
RGB image from 0 to 10 based on given preferences. The
objective scoring is calculated by selecting different features
with varying weights according to specific preferences.

B. Symbolic Spatial Relationship Experiments

1) Settings: To test the ability of in-context learning to
learn human preferences, we conducted experiments using
tidying up tables as an example on the PyBullet [38]
platform, involving 5 to 10 objects. This test includes two
aspects. First, the ability of the algorithm to extract human
preferences from modifications in object relationships, and
second, the understanding and application of human pref-
erences. To standardize the output format, in methods that
do not involve in-context learning, only content related to
preference learning has been removed.

Considering the inherent ability of LLMs to process se-
mantic information, we categorize object types used in exper-
iments into those containing semantic information, namely
everyday items, and those lacking semantic information,
which mainly include boxes and cylinders.

The evaluation criteria are divided into three levels: scene
graph, action sequence, and preference. The scene graph
includes stability and area, the action sequence includes exe-
cution efficiency and feasibility, and the preference includes
learning and application. In the evaluation of the scene graph,
the stability cost function is defined as

Lstab :“

ř

o Masso ¨ }CoMo}2 ` }
ř

o Masso ¨ CoMo}2
ř

o Masso
(4)

where Masso denotes the mass of object o, and CoMo

represents the center of mass of object o relative to the

base object. The area cost function is defined as Eqs. (1)
and (2). The corresponding scores are scaled and transformed
into a range of 0 to 10 through min-max normalization.
The execution efficiency of the action sequence is inversely
proportional to the length of the task plan, and feasibility
includes logical feasibility and physical feasibility. Logical
feasibility analyzes whether the inherent logic of the plan is
correct, including the format of instructions, while physical
feasibility analyzes whether the plan can be successfully
executed physically. Preference learning utilizes Sentence-
Transformers [39] to measure the cosine similarity between
learned preferences and the ground truth. The application
of preferences tests the algorithm’s understanding of pref-
erences by evaluating its application to new scenarios. The
overall score is calculated as the average of the subjective and
objective scores from the benchmark. The scaling method for
the objective score follows the same approach as the stability.

TABLE II: Results of task planning without semantic information
(average across 5 to 10 objects)

Criteria With ICL Without ICL

Goal Stability Ò 7.18 7.28
Area Ó 8.45 8.61

Sequence Length Ó 14.81 14.67
Feasibility Ò 12.98 8.44

Preference Learn Ò 0.95 0.47
Apply Ò 85.48 66.67
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Fig. 4: The example results generated with or without in-context
learning, where humans prefer mixing all objects together.

2) Results: Table II displays the corresponding results
when there is no semantic information. In this experiment,
5 to 10 objects are randomly sampled within appropriate
ranges of categories and sizes. When the number of objects
in a category is less than one-third of the total, or greater
than two-thirds, the preference is to mix boxes and cylinders,
meaning there exist instances of one category of objects
placed on top of another. In all other cases, the preference
is to separate boxes and cylinders. From Table II, it can
be seen that using in-context learning greatly improves the
feasibility of generating plans, as well as preference learning
and application. Fig. 4 shows visual examples of scenarios
requiring mixed objects.

Table III presents the results with semantic information.
When identical objects are present, the preference is set to
disallow stacking identical objects together. From Table III,
it can be observed that the overall feasibility of the plan
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Fig. 5: The results of two sets of real robots tidying up a table. The first was configured with zero-shot learning, while the second used
one-shot learning. Results without preference were also provided for comparison.
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Fig. 6: The example of using LLM-GROP and POG to generate
object poses.

is improved when using everyday objects, while the use of
in-context learning still enhances preference learning and
application capabilities. Additionally, we observed that as
the number of objects increases, the logical feasibility of the
plans generated by the LLM significantly decreases, with
frequent occurrences of hallucinations and inconsistencies.
This issue is particularly evident in methods that do not
involve in-context learning, where the LLM often generates
nonexistent actions or operation logic in an attempt to handle
human preferences.

TABLE III: Results of task planning with semantic information
(average across 5 to 10 objects)

Criteria With ICL Without ICL

Goal Stability Ò 8.69 8.62
Area Ó 8.02 7.98

Sequence Length Ó 12.32 12.65
Feasibility Ò 26.45 10.74

Preference Learn Ò 0.86 0.39
Apply Ò 93.33 89.02

C. Geometric Spatial Relationship Experiments

1) Settings: We aim to have the LLM generate more
precise geometric spatial relations based on symbolic spa-
tial relationships using the algorithm proposed in LLM-
GROP [40], and we compare these results with tra-
ditional optimization-based algorithms. The experimental
setup, based on LLM-GROP [40], involves a service robot
tasked with arranging a dining table. For testing, we sample
3 to 5 objects from 7 categories, totaling 26.

The evaluation criteria for this experiment include success
rate and orthogonality. The success rate is defined as whether
the method can place all objects on the table without colli-
sions. Orthogonality is defined as in Eq. (3).

2) Results: Table IV shows the results. Orthogonality is
transformed into scores using min-max scaling. It can be
observed that even with only 3 to 5 objects, the success rate
of LLM-GROP [40] is below 60%, while POG [29] achieves
100%. Additionally, POG [29] outperforms in orthogonality,
indicating a neater placement of objects. Fig. 6 illustrates
examples of object poses generated using LLM-GROP [40]
and POG [29], respectively.

TABLE IV: Results of geometric spatial planning (average across
3 to 5 objects)

Criteria LLM-GROP POG
Orthogonality Score (¨{10) 5.45 7.04

Success Rate (%) 56.67 100



D. Simulation Experiments

1) Settings: We conducted ablation experiments on the
OmniGibson [37] platform to validate the ICLHF algorithm’s
ability to plan in accordance with human preferences while
adhering to physical constraints. The experiments are based
on the benchmark we previously proposed and are divided
into four categories: tidying up, unloading, unpacking, and
cleaning, each with corresponding human preferences. To
enhance the complexity of the experiment, we integrated
various human preferences from previous tasks into a room
tidying task. This enabled us to analyze how the algorithm
balances complex and diverse preferences in more realistic
scenarios. Additionally, we observed that LLM itself pos-
sesses many common human preferences, so the preferences
used in the experiments have distinct personalities. The
number of objects in the experiments ranges from 5 to 15,
with their categories and poses sampled within appropriate
ranges. The method for evaluating preferences is similar to
the previous one, supplemented with quantitative scores.

2) Results: Fig. 7 presents the results of the experiments,
visualizing some scenarios and supplemented with quantita-
tive scores. The fourth row of RGB images depicts a scene
that combines the preferences from the scenes in the first
three rows. It can be seen that plans generated solely under
physical constraints do not meet specific human preferences,
while considering preferences alone may result in impractical
plans. Only the ICLHF algorithm, which simultaneously
considers both physical constraints and human preferences,
is capable of addressing this challenge. Additionally, the
algorithm demonstrates strong generalization abilities, mean-
ing previously learned human preferences can be applied to
unknown scenarios.

The computational complexity primarily involves LLM
and the pose synthesis module. The latter’s efficiency is
improved through the use of oriented bounding boxes and
parallel processing of different groups, averaging 0.6 seconds
in current experiments.

E. Real Robot Experiments

Lastly, we conducted manipulation experiments using a
Franka Research 3 manipulator, where the task was to
tidy up a table. Initially, the robotic arm followed physical
constraints to tidy up the table efficiently. Subsequently,
human preferences were explicitly expressed, and the robotic
arm adjusted its actions accordingly. When faced with a
new scenario, the robotic arm planned actions based on
previously learned human preferences while strictly adhering
to physical constraints. As a comparison, results without
considering human preferences were provided for evaluation.
The experimental results are shown in Fig. 5, demonstrating
the robot’s excellent task completion and adaptability.

IV. CONCLUSION

In this paper, we introduce a dual-loop planning frame-
work that integrates physical constraints and human prefer-
ences, offering a novel human-in-the-loop paradigm. Based
on this framework, we propose the In-Context Learning
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Fig. 7: The results of the ablation experiments include visualizations
of selected scenes, supplemented by quantitative data analysis.
Preferences for tidying involve laying objects flat on the table.
Preferences for unloading entail placing all items in the same cart,
and unpacking preferences dictate avoiding placing items unrelated
to sleeping on the bed. The ICLHF algorithm, which integrates both
physical constraints and human preferences, can generate plans that
are physically feasible while also aligning with human preferences.

from Human Feedback (ICLHF) algorithm, which can learn
human preferences in situ and make plans that adhere to
physical constraints while aligning with preferences. To
validate the effectiveness of the proposed algorithm, we
introduce a novel benchmark that incorporates personalized
preferences into the evaluation process. We conduct extensive
experiments to verify the capabilities of the ICLHF algo-
rithm across various aspects. Finally, real robot experiments
demonstrate its practicality in robotic hardware.
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