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Abstract— This paper presents a Genetic Algorithm (GA)
designed to reconfigure a large group of modular Unmanned
Aerial Vehicles (UAVs), each with different weights and inertia
parameters, into an over-actuated flight structure with im-
proved dynamic properties. Previous research efforts either uti-
lized expert knowledge to design flight structures for a specific
task or relied on enumeration-based algorithms that required
extensive computation to find an optimal one. However, both
approaches encounter challenges in accommodating the hetero-
geneity among modules. Our GA addresses these challenges by
incorporating the complexities of over-actuation and dynamic
properties into its formulation. Additionally, we employ a
tree representation and a vector representation to describe
flight structures, facilitating efficient crossover operations and
fitness evaluations within the GA framework, respectively. Using
cubic modular quadcopters capable of functioning as omni-
directional thrust generators, we validate that the proposed
approach can (i) adeptly identify suboptimal configurations
ensuring both over-actuation and trajectory tracking accuracy
and (ii) significantly reduce computational costs compared to
traditional enumeration-based methods.

I. INTRODUCTION

By docking and undocking with each other, modular UAVs
can transform into various structures, exhibiting significant
advantages in terms of versatility, robustness, and cost com-
pared to aerial robots with fixed flight configurations [1].
An ideal flight structure is typically achieved by human de-
signs leveraging expert knowledge that accommodates task-
specific requirements such as payload transportation [2, 3],
object manipulation [4-7], and dynamic exploration [8,9].
To mitigate the manual efforts involved in the design process,
several algorithms have been proposed to systematically
enumerate all possible flight structures and select the optimal
one based on a given metric [10—14]. However, as the number
of modular UAVs in the system increases, designing an
optimal flight structure solely based on human expertise
could become infeasible, and the computational complexity
of finding such one grows exponentially.

Search sub-configurations with a heuristic to reduce the
search space [12] and optimization-based methods [15, 16]
have recently emerged as promising means to improve the
computational efficiency in finding optimal or at least near-
optimal flight structures of a modular UAV system. However,
when the modules are equipped with different types of
sensors, interacting tools, or payloads, the complexity of
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Fig. 1: The optimal structure configuration with five modu-
lar UAVs with different installed equipment. Each module is
equipped with either a manipulator, an RGBD camera, a Lidar,
or a computing unit, resulting in different weights and inertia
parameters. The proposed algorithm efficiently produces an over-
actuated flight structure with optimal dynamical properties.

finding an ideal flight structure through algorithmic solu-
tions escalates because of the non-identical weights and
inertia parameters among the modules. Such heterogeneity
would significantly influence the dynamical properties of the
resulting vehicle, leading to stability and trajectory-tracking
challenges. Furthermore, the solution space of finding opti-
mal flight structures with heterogeneous modules becomes
too complex for existing methods [12, 15, 16].

To tackle the above challenge, we employ Genetic Algo-
rithm (GA) to efficiently find the suboptimal flight structure
composed by UAV modules with different weights and
inertia to achieve (i) over-actuation with high trust efficiency
and (ii) good controllability for trajectory tracking. The GA
is a population-based search algorithm capable of addressing
both constrained and unconstrained optimization problems
through natural selection [17], thus offering a more flexible
formulation to solve the structure optimization problem. To
support efficient computation with a minimal budget, we
leverage two representations to describe the flight structure
of a modular UAV system within the GA: the assembly
incidence matrix (AIM) (tree representation) for generating
new structures with specialized crossover operations [18] and
the position vectors for evaluate the fitness of each structure.

To evaluate the proposed approach, we adopt a customized
modular UAV system. Each module is a quadcopter con-
nected to a cubic docking frame through a 2-Degree-of-
freedom (DoF) passive gimbal mechanism and thus can
be treated as an omni-directional thrust generator af-
ter docking with each other horizontally and forming a



flight structure [19, 20]. Specialized equipment with different
weights or shapes can also be installed on the bottom of a
module’s docking frame, resulting in heterogeneous modules.
Fig. 1 illustrates the modular UAV system and the flight
structure found by the proposed algorithm which is over-
actuated, i.e. independent position and attitude control, and
dynamically optimal.

Our verification first illustrates the convergence process
of solving the optimization of flight structures in two cases,
each consisting of more than 30 heterogeneous modules.
Then, four flight structures at different stages of the opti-
mization process are selected to compare their dynamic prop-
erties in trajectory-tracking simulation after implementing a
hierarchical controller. Finally, the computational efficiency
of the proposed GA is studied and contrasted with that of
the enumeration-based method. The results highlight that
the proposed approach provides dynamically optimal flight
structures for large modular UAV systems with significantly
better computational efficiency.

II. RELATED WORK

Developing aerial modular robots that can adapt to
various mission settings flexibly through reconfiguration has
attracted a lot of research attention, and progress has been
made in modular UAV system hardware design [2, 3,5, 21,
22], dynamics modelling [20, 23, 24], formation control [5],
control allocation [19,25,26], and docking trajectory plan-
ning [27,28]. In the above cases, the system’s structure
and module configurations are manually designed and fixed.
More recent work sought to find the optimal/suboptimal
flight structure for modular UAVs. Specifically, Gandhi et
al. formulated a mixed integer linear programming to re-
configure the flight structure under propeller faults on some
modules [15]. Gabrich er al. proposed a heuristic-based
subgroup search algorithm that achieved better computation
efficiency than enumerating different types of modules at
each module location [12]. Xu et al. evaluated a structure’s
actuation capability by solving an optimization problem [16].
However, the dynamic discrepancy between different mod-
ules in weight and inertia parameters is still not considered
by these works, prohibiting the fly structure from achieving
superior dynamic properties in different task environments.

The problem of structure optimization for a modular
robotic system was first investigated by Chen et al. in [10],
where an algorithm was proposed to enumerate all non-
isomorphic configurations of a modular manipulator system.
The following work extended the scope to various modular
robot systems with improved computation efficiency [10,
11,13, 14]. However, as the number of modules increases,
the set of configurations enlarges factorially, and finding an
effective configuration through an exhaustive search becomes
infeasible [18,29]. On the other hand, utilizing GA to find
a suboptimal configuration of the modular robotic system
has been demonstrated in a simple serial connected structure
with much better computation efficiency [18]. In this paper,
we generalize this approach to a modular UAV system with
a more complicated tree structure. Taking advantage of our
proposed fitness evaluation function and crossover operation
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Fig. 2: Coordinate systems and configuration representations
of a flight structure. Each quadcopter module can connect to four
others with its docking faces, and each module serves as an omni-
directional thrust generator after connections, making the flight
structure over-actuated. Different types of representation of the
flight structure are incorporated to support subsequent optimization.

for the GA, a suboptimal flight structure configuration can
be efficiently found.

III. SYSTEM CONFIGURATION

Each modular UAV is constructed by connecting a cus-
tomized quadcopter to the cubic docking frame (size [) by
a 2-DoF passive gimbal mechanism that has no limits in
rotation angle. As shown in Fig. 2(a), a flight structure can
be formed with several modules (indexed by ¢ =1, - -- ,n) by
docking with each other. As each quadcopter module can be
utilized as an omni-directional thrust generator, the resulting
multirotor flight structure has the potential of being over-
actuated to gain better maneuverability with independent
position and orientation tracking capabilty [30]. To represent
the entire flight structure, we first index the four docking
faces of one module by {f1, f2, f3, f4} (see Fig. 2(b)). Then
we derive a simplified representation of the flight structure
using a matrix (tree) for the subsequent computation applied
to the rest of this paper.

A. System Frames Definition & Notation

Let Fy denote the world coordinate frame and Fs be
the structure frame attached to the geometric center of the
flight structure. We define the position of the structure as
Xs=|[zs, ys, zs]", the attitude of the structure in the
roll-pitch-yaw convention as ©s = [¢s, 05, 1s]", and the
angular velocity Qs =[ps, ¢s, rs]'. The frames F;s are
attached to the center of the i-th module. d; = [;, y;, 0]"
denotes the vector from F; to Fs.

B. Flight Structure Configuration

The configuration of the flight structure refers to a set of
points (d;) in S that represents the positions of n docked
modules w.r.t the structure frame Fs. Following the idea
introduced by Chen er al. [18], we describe the flight
structure as a tree where the module 1 is chosen as the root.
The structure configuration can then be characterized by the
assembly incidence matrix (AIM).

Using the configuration in Fig. 2(a) as an example, the
corresponding AIM is shown in Fig. 2(d), where each row



represents a module, while each column represents a docking
face.
Aip:j,qu:i,p,q6{1,2,3,4}, (1)

indicates the p-th face of module ¢ is connected to the

g-th face of module j. Of note, A(S) is a normalized

representation that is independent of module dimension /.
We can calculate d; from A(S) with the following steps

(refers as PosTreeSearch function in the rest of the paper) :

1) assuming the module 1 is at the origin d; = [0,0,0]" and
determining the position of each module d; recursively
with the Depth-First tree traversal algorithm and the Step
matrix that describes the relative position between two
modules according to the docked face:

fi fo f3 fa

z/1 0 -1 0
Step=y[ 0 1 0 —1]|xleR¥> (2

2\0 0 0 0

Specifically, if d; is known and Eq. (1) satisfied, then the
position of the module j is calculated as:

dj =di+Step(:7p). 3)

2) calculating the geometric center position of the structure
S with d, = 57 Y1, mud;, where M =" m; is the
total mass of the flight structure with m; represents the
mass of module 7;

3) shifting the geometric center of S to the origin with d; =
d; —d,, which ensures 57 >,/ ; m;d; =0.

The reason for having both position vectors d; and AIM
as two representations for the flight structure is twofold:
(i) the dynamic property evaluation of each flight struc-
ture requires d;, but checking the feasibility of forming
a connected structure with d; of each module can be a
tedious process [10]; (ii) describing the flight structure as
a tree with the AIM representation naturally ensures all
the modules are connected. Additionally, dividing the tree
into two sub-trees and reconnecting them is an efficient
way to generate new structures. This approach simplifies
the feasibility check process as only the overlap between
modules needs to be considered. Therefore, during flight
structure optimization, we maintain two representations of
each structure to efficiently generate new structures and
evaluate their dynamic properties.

C. Flight Structure Dynamics

Given a flight structure, its translational dynamics can be
described as [31]:

MXs="4R()"RT;%)+M g2, @)
1=1

where X s is the linear acceleration of the flight structure, g is

the gravitational acceleration, SZR is a function of tilting and

twisting angles («; and ;) of ith module, and T; refers to the

magnitude of thrust generated by ith module, 2 = [0, 0, 1]".
Its rotational dynamics can be described as [32]:

JsQs=—QsxJsQs+>.(di xSRTi2), (5

i=1

where J s is the total inertia matrix of the structure:

Js=ZJ¢+Zmi —Tiyi T 0 , (0
im1 i=1 0 0 2?2 +y?

with J; = Diag(Jiz, Jiy, Ji-) is the inertia matrix of each

the module, s is the angular acceleration of the structure.

Taking together, the complete dynamics model of the flight
structure is:

Xs] [L%R o0 ] [ g% ]
vS| = _ 7
[Qs] [ 0 J§11L+ —J5' Qs x Tss) | 2

where u is the 6-DoF wrench generated by all modules with

P
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Of note, due to the passive gimbal mechanism design and the
low-level control of each module eliminating rotating torques
in the z-axis [20], there is no rotation-induced torque of
propellers pass to the mainframe. Therefore, in the simplified
dynamics model Eq. (7), the input of each module is only
considered as a 3-axis force vector. Besides, the total inertia
matrix is approximated as a constant matrix.

D. Force Decomposition-based Analysis

Utilizing the force decomposition method, we can trans-
form the nonlinear relationship in Eq. (8) to a linear one by
defining F' as an intermediate variable [20, 26]:

Fl sin Bz
F=|: eR3 F, = | —sina;cos B; | T;,  (9)
F, | cosa; cos Bi

Then, the 6-DoF wrench u can be rewritten as:

Ix(a,B)]
ul = [J);(a,ﬂ) T=WF,

(10)

where W e R6%3” is a constant allocation matrix with full
row rank. Treating F' as inputs to the system, its dynamics
can be analyzed from a linear perspective. The real inputs
tilting angle «;, twisting angle [3;, and thrust force T; of each
module are computed from F' using inverse kinematics.

IV. FLIGHT STRUCTURE OPTIMIZATION

To find the optimal flight structure that is over-actuated
and dynamically optimized, we first isolate the configuration-
related factors from the dynamics equations (allocation ma-
trix W and total inertia matrix J). Then we design an
evaluation function of each flight structure from the dynam-
ics/control perspective. Finally, a GA is implemented to find
the suboptimal flight structure with improved computation
efficiency.

A. Dynamic Property Evaluation

The allocation matrix W is derived as [12]:
SR ... 0

1
w-pr-|% I8 . ,
dl dn . s
R

n

(1)
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Fig. 3: The fitness values for different flight structures composed of five same-welghted modules. Configuration (a) has —Inf fitness
value as it is under-actuated, while (f) has the maximum fitness value (optimal dynamics property) due to its symmetric configuration.

where PeR6*3n ReR37*3n  d, is the skew symmetric
matrix of d;. From the formulation of P, we can easily find
that the translational dynamics (the first three rows of W) are
independent of the configuration. Therefore, we only focus
on the rotational dynamics (the last three rows of W) in this
optimization problem. Besides, the total inertia Js is also
related to the structure configuration (see Eq. (6)) which is
not neglectable. Therefore, we define a matrix D as:

D-Js'D=J3'|d - d|. (12)
Calculating the required thrust energy index ||| and ne-
glecting Qs x JsQs, we have:

|IT|1? = ||F|* =ub, D" RR"DTuq = Q5D D' Qs

_ . . (13)
< UmaX(DT)2||QS||2 VQs,

where (-) is the Moore-Penrose inverse of a matrix, and
Omax (+) is the maximum singular value of a matrix.

Based on the above analysis, we formulate the flight
structure evaluation function as :

argmax  —Ajcond(D D) — AoOmax (D)2, (14)

D
where cond(-) is the condition number of a matrix. The
left half of the objective function —cond(D) considers the
controllability where the full-actuation constraint is implic-
itly included (cond(D) = Inf if rank(D) < 3); the right half
fomax(DT)Q characterizes the thrust minimization criteria
(Eq. (13)), A\1_o are the weighting parameters.

B. Genetic Algorithm

Given the number of modules n, the total number of
different structures can be analytically calculated [33], and
the method of enumerating all feasible A to find an optimal
flight structure has been introduced in [10]. However, as n
increases, the number of A grows factorially and thus it
demands excessive computation. To overcome the limitation
of existing methods, we propose a GA to find a suboptimal
flight structure configuration with better efficiency. Different
from the serially connected structure handled by [18], we im-
plement the GA (see Alg. 1) to deal with more complicated
tree representation in this work.

At first, each chromosome in the population is randomly
initialized as a serial chain, e.g. a chain with five modules
in Fig. 3(a). In each generation, (i) we first evaluate the
fitness of the population; then (ii) we pick some chromosome
from the population through a tournament; (iii) every picked
chromosome is utilized to generate new children by crossover
operation; (iv) we evaluate the existing population along
with their children and select new population from them

Algorithm 1: Genetic Algorithm

Input : Number of UAV modules: n,
Mass of each module: m1. 4,
Inertia of each module: Ji_ ,

Ouput : Optimized structure: A*

Params: Maximum population size: PopSize,
Maximum generations: GSize,
Tournament size: TSize,

Number of children: CSize,
Crossover probability: CrossP,
Number of generations for convergence check: K

// Initialize population and fitness

Pop «— Initialize(PopSize, n) g R™*4xPopSize,

Fit «— computeFitness(Pop); see Alg. 2

// Generation iteration

for G;€1---GSize do

NewPop « Pop;

for te1---TSize do

// Tournament selection

idx < TSelect(Pop, Fit, TSize);

Chromo « Pop(:, :, idx);

// Generate children

for je1--- CSize do

if rand < CrossP then

| NewPop(:, :, end + 1) « Crossover(Chromo)
else

| NewPop(:,:,end + 1) <— Chromo;

NewFit «— computeFitness(NewPop, m1..n, J1..n);
// Select new population
Pop, Fit < PopSelect(NewPop, NewFit, PopSize);
if max(Fit) repeat for K generations then

| break // Optimization converges

A* «—Pop(:,:, 1);

Algorithm 2: computeFitness

InplIt : POFM mi.n, J1.n
Ouput : Fitness
Params: Quadcopter size in Eq. (2): [
The root of tree representation: root
Weighing parameters: A1, A1
Fitness «— J;
for Chromo € Pop do
d <« PosTreeSearch(root, Chromo, Step);
Js «Eq. (6), D <Eq. (12);
FValue < —\jcond(D) — Aogmax(svd(D))?;
Fitness « Fitness U {FValue}

as the next generation. The fitness evaluation and crossover
operation as two main components will be introduced in
detail next, which correspond to computeFitness (Alg. 2)
and Crossover (Alg. 3), respectively.

Fitness evaluation: To evaluate the optimality of different
structure configurations, we choose Eq. (14) as the fitness
function, which requires both the position vector d; and total
inertia matrix Js derived from the AIM of a structure for
evaluation. Following the method introduced in Sec. III-B,
the position of each module is first decided with the Depth-
First tree traversal algorithm. And then D matrix is built
with Egs. (6) and (12) for fitness value calculation. The
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Fig. 4: Steps of a crossover operation. The crossover operation divides the original tree into two small trees and reconnects them to
build a new one. Through the crossover operation, all the feasible configurations can be acquired.

Algorithm 3: Crossover

Input : Chromo

Ouput : NewChromo

Feasible « False;

while —Feasible do

ChR « Chromo, r « randomInt(1, n);

// Find feasible docking faces,
current docking face pairs

[LF, RF, DF| < DFSTreeSearch(r, ChR);

// Delete current docking connections

ChR(DF(1,:)) <0, ChR(DF(2,:)) <0;

// Random select a connecting face L

L < LF(randomInt(1, length(LF)), :);

// Random select a connecting face R

R — RF(randomInt(1, length(RF)), :);

// Connect as a new tree

ChR(L) < R(1,1), ChR(R) « L(1,1);

// Rotate small tree

ChR < RotateFaces(ChR, RF);

// Check new tree with no overlap

Feasible < CheckFeasible(ChR);

NEWChromo ~— ChR;

and

detail of this function is described in Alg. 2. In Fig. 3, some
structure configurations with five same-weighted modules
are plotted and evaluated with our proposed fitness function
as examples. We can easily find the Fig. 3(a) has the
minimum fitness value due to under-actuation, while plus
shape configuration Fig. 3(f) has the maximum fitness value.
The fitness function will be studied and discussed in Sec. V.

Crossover operation: As demonstrated in Fig. 4, we
define the crossover operation as breaking the tree structure
into two subtrees and reconnecting them into a new tree.
For a given configuration input, (i) we first randomly pick a
module r as the breaking point, and utilize a Depth-First Tree
Search algorithm to break the tree into two small trees, then
we collect all the possible docking faces on the left tree and
the right tree, as LE" and RF respectively (see Fig. 4(a)); (ii)

With one randomly picked element from both sets (L and R)
as the new pair of docking face, we connect two subtrees into
a new one, then we rotate the faces of the small tree to make
sure the position relationship is identical to the Step matrix
Fig. 4(b) and check the feasibility of the new structure. This
function is summarized in Alg. 3.

V. EVALUATION

Through a series of studies, we demonstrated that the
proposed method (i) effectively solved the flight structure
optimization problem with a large number of modules
with different weights, (ii) gradually improved the dynamic
properties of an over-actuated flight structure through the
proposed crossover operation and fitness evaluation, and
(iii) significantly outperformed a traditional emulation-based
algorithm in terms of computing time.

A. Simulation Setup

Utilizing the Simscape module of Matlab Simulink, we de-
veloped a simulator where the characteristics of real systems
were included, such as control frequencies, motor dynamics,
thrust saturation, and measurement noise. Implementing the
hierarchical controller developed in our previous work [19,
20,34, 35], we could compare the dynamic properties of
generated flight structures by testing their trajectory-tracking
performance in simulation.

B. Evaluation Results

Optimizing a complex structure: In this study, we
demonstrated that the proposed GA could scale up to op-
timize flight structure configuration for a large swarm with
30 heterogeneous modules (Case 1) and another with 37
modules (Case 2). The weight of each module was randomly
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Fig. 5: The optimization process of generating an optimal
flight structure for a large modular UAV system swarm with
different-weighted modules. Two cases with n =30 and n =37
are presented to illustrate the evolution of the optimization process.

sampled from 1—5.5 kg, indicated by the color bar. As
seen in Fig. 5, During the optimization process, the fitness
value for Case 1 (n=30) gradually improved from —Inf
and eventually converged to —1582.7 after 80 generations.
The final flight structure was over-actuated and formed an
approximately symmetric configuration with heavier modules
in the middle, which had better controllability across all
directions. A similar result could be observed for Case 2
(n=237) as well.

Generating efficient flight structure: Four flight struc-
tures (the 10th, 20th, 40th, and 80th generations) generated
along the optimization process of Case I in Fig. 5, who have
an increasing fitness score, were selected to evaluate their
dynamics properties in tracking a challenging 6-DoF trajec-
tory. The thrust energy consumed by the structures to track
the trajectory and the corresponding tracking errors were
plotted Fig. 6. Tab. I further listed the accumulated energy
cost derived from thrust and the tracking RMS errors of each
structure along the entire trajectory. Despite these 4 flight
structures being over-actuated and could independently track
position and orientation commands, the converged structure
configuration (G;(80)) performed the best in terms of the
least energy cost and RMS errors. This configuration also
yields the highest fitness value, demonstrating its efficacy in
ensuring over-actuation with better dynamics properties.

Computation speed: To demonstrate the proposed
method’s improvement in computation efficiency, we im-
plemented a classic emulation-based method [10, 11] as the
baseline and compared its computing time and converged
fitness with those of the proposed GA with two population
sizes (GA1 and GA2; see Tab. II for detailed parameters).

TABLE I: Correspondence between structures’ fitness value
rank and their flying performance. Four structures (the 10th, 20th,
40th, and 80th generations) that correspond to the Case I of Fig. 5
are selected to compare their dynamics properties in simulation,
and the converged structure indeed performs better than the others.

Structure Gi(10)  Gi(20)  G;(40)  Gi(80)
Fitness value —1332.9 —1164.9 —1050.0 —987.8
ST?(107) 5.8587 5.8521 5.8432  5.8401

Pos RMS error (m) 0.1889 0.1883 0.1878 0.1874
Att RMS error (rad)  0.1693 0.1407 0.1221 0.1171
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Fig. 6: Comparison of the tracking performance of different
flight structures composed of 30 different-weighted modules.
Although all 4 structures are over-actuated, some outperform others
in terms of trajectory tracking accuracy due to better controllability.
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Fig. 7: Computation speed and optimality of the proposed
GA and the baseline enumeration method. The GA with two
population sizes performs significantly faster than that of the
baseline. Though the global optimality is not guaranteed, the GA
could still converge to a suboptimal solution, showing a good trade-
off between computation efficiency and optimality.

Using a desktop with AMD Ryzen9 5950X CPU and 64.00
GB RAM, the results are shown in Fig. 7. The proposed
GA significantly shortened the required computing time
compared with the baseline, especially when the number
of modules n became large. Meanwhile, the converged
suboptimal configuration found by both settings was close to
the global optimal one in terms of fitness. Of note, lowering
the population size (i.e. GAl vs. GA2) could reduce compu-
tation, but would sacrifice the optimality, which implies the
necessity of balancing optimality and computation efficiency.

TABLE II: Genetic Algorithm Parameters

Parameter PopSize GSize TSize CSize CrossP K Set

3000 100 100 30 0.95 10 GAl
1000 100 100 30 0.95 10 GA2

Value




VI. CONCLUSION

In this paper, we devised a novel optimization method
aimed at finding efficient flight structures for modular UAV
systems. This method utilized genetic algorithms (GA) to
address an energy-minimizing objective function while satis-
fying over-actuation constraints. By representing the configu-
ration as a tree structure for customized crossover operations
and as a position vector for fitness evaluation, the GA ef-
fectively tackled the optimization problem with significantly
reduced computational costs compared to existing emulation-
based algorithms for flight structure optimization. Based on
our customized modular UAV system, simulation studies
illustrated (i) the algorithm’s ability to identify efficient
flight structures for a large number of modules, (ii) the
superior dynamic performance of the resulted flight structure
in tracking challenging trajectories, and (iii) the improvement
in computational efficiency. Looking ahead, our future plan
includes conducting experiments with physical platforms and
further enhancing computational capabilities to enable online
reconfiguration based on varying task constraints.
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