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Abstract

Despite the significant demand for assistive technology
among vulnerable groups (e.g., the elderly, children, and
the disabled) in daily tasks, research into advanced AI-
driven assistive solutions that genuinely accommodate their
diverse needs remains sparse. Traditional human-machine
interaction tasks often require machines to simply help with-
out nuanced consideration of human abilities and feelings,
such as their opportunity for practice and learning, sense
of self-improvement, and self-esteem. Addressing this gap,
we define a pivotal and novel challenge Smart Help, which
aims to provide proactive yet adaptive support to human
agents with diverse disabilities and dynamic goals in vari-
ous tasks and environments. To establish this challenge, we
leverage AI2-THOR [32] to build a new interactive 3D real-
istic household environment for the Smart Help task. We in-
troduce an innovative opponent modeling module that pro-
vides a nuanced understanding of the main agent’s capa-
bilities and goals, in order to optimize the assisting agent’s
helping policy. Rigorous experiments validate the efficacy
of our model components and show the superiority of our
holistic approach against established baselines. Our find-
ings illustrate the potential of AI-imbued assistive robots in
improving the well-being of vulnerable groups.

1. Introduction
All of us may find ourselves within vulnerable demograph-
ics at some point. Throughout the human life span, we
confront an array of challenges, whether originating from
physical discomfort [12], emotional turmoil [53], or the in-
evitable march of aging [22], that can hinder our ability to
perform even the simplest tasks that we once accomplished
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effortlessly (e.g., lifting a heavy object). This predica-
ment often triggers a complex emotional response. The
fear of being labeled as “special” or “disabled” can evoke
feelings of diminished self-esteem, reduced self-efficacy
and self-sufficiency, and a sense of personal boundary vi-
olation [8, 40]. However, previous research in human-
robot interaction has primarily focused on pure coopera-
tion [30, 38, 42, 43, 52, 57], and assistive technologies [4, 7]
have been designed to simply take over everything for hu-
man users, often disregarding their emotional well-being.
Considering the importance of sensitivity and consideration
when offering help, we need new assistance technologies
with an emphasis not only on the successful completion of
the task but also on the recipient’s emotional acceptance of
the assistance [8, 40]. This introduces a new dimension to
the concept of learning to help in AI, extending the bound-
aries beyond technical proficiency and into the realm of em-
pathetic engagement.

To tackle this issue, we propose a novel and pivotal
challenge Smart Help, aiming to provide both proactive
and adaptive support to human agents with diverse disabili-
ties and dynamic goals in different tasks and environments.
Fig. 1 exemplifies the concept of the Smart Help strategy as
applied to an assistive robot aiding a human in a household
task. The Basic Helper fails to provide proactive assistance
due to its inability to infer the user’s goals accurately. The
Ordinary Helper successfully infers the user’s goals from
observations and offers proactive help, but it lacks adapt-
ability to different user needs. Its simple “take-over” help-
ing strategy can cause a feeling of discomfort in the human
user. In contrast, the Smart Helper not only infers both the
user’s goals distribution but also reasons about the user’s ca-
pability of completing each goal independently. As a result,
the Smart Helper can identify critical goals that hinder task
completion and provide proactive and adaptive help that se-
lectively addresses those bottlenecks. This approach allows
the user to accomplish the task successfully and joyfully.

Leveraging AI2-THOR [32], a 3D interactive environ-
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Figure 1. An example of the Smart Help strategy for an assistive robot. The top left shows the human user’s capability distribution
across several dimensions (e.g., weight for lifting heavy objects and height for grasping objects from high positions), as well as the current
task (e.g., making coffee). The figure illustrates three types of helpers: (1) The Basic Helper merely observes the human user without
inferring anything, and thus remains idle and waits until the human user fails the task, leading to frustration. (2) The Ordinary Helper
infers the human user’s goals through observations and always provides simple and direct assistance for each goal, taking over the entire
task. While the task is successfully completed, the human user is left dissatisfied because the robot’s helping strategy is overly intrusive,
causing discomfort. (3) The Smart Helper infers both the human user’s goals and her capability distribution. It reasons about whether the
human user is capable of independently accomplishing each goal and thus identifies the bottleneck goal that hinders task completion. The
proactive helper then adapts its strategy to assist solely with the bottleneck goal. As a result, the human user successfully completes the
task with tailored support, feeling comfortable and satisfied.

ment engineered for realistic home simulations, we demon-
strate a concrete realization of the proposed novel chal-
lenge Smart Help. We create a multi-agent interactive en-
vironment featuring a main agent with diverse capability
distributions (representing the vulnerable group) across di-
mensions, such as toggling, opening, closing, weight, and
height. Within this environment, the main agent faces chal-
lenges in achieving dynamic goals across various tasks, and
an assistive robot is introduced to assist the main agent
throughout their endeavors. Unlike previous assistive tasks
that were highly specialized and constrained, such as the use
of a robotic arm for the disabled [10, 17, 51], our work rep-
resents, to the best of our knowledge, the first construction
of a 3D home environment designed to assist the vulnerable
group with various general daily household tasks.

Furthermore, we build a new benchmark model for our

proposed challenge, which consists of 1) an opponent mod-
eling module that jointly optimizes goal inference and capa-
bility estimation, and 2) a helping policy module that rea-
sons about the bottleneck, and learns an optimal Smart Help
policy in an online interactive manner. To better evaluate
performance in the Smart Help task, we also introduce six
assessment metrics. Contrary to traditional evaluation met-
rics primarily focusing on cumulative reward or task com-
pletion, our metrics emphasize the helper’s contribution to
the task and the essentiality of assistance. Rigorous exper-
iments validate the efficacy of our model components and
show the superiority of our holistic approach against base-
lines. We believe our proposed task, environment, model,
and benchmark will contribute to the development of next-
generation advanced home assistive robot technologies.

Our main contributions can be summarized as follows:



• We propose a novel Smart Help challenge that aims at
learning to provide both proactive and adaptive help to
diverse human users (especially vulnerable groups) based
on inferred goals and capabilities.

• To the best of our knowledge, we contribute the first
3D realistic home environment built upon AI2-THOR,
that focuses on assisting the vulnerable group with daily
household tasks in an online and interactive manner.

• We provide a benchmark model with a joint goal and ca-
pability inference, bottleneck reasoning, and helping pol-
icy improvement. Strict experiments and the proposed
holistic evaluations validate the efficacy of our model.

2. Related Work
Assistive Robots. The domain of assistive robots encom-
passes a broad spectrum of research, focusing on enhancing
the life quality for individuals with various needs and span-
ning diverse applications such as mobility aids [1, 20], com-
panion robots [46], and robotic arms [21]. Feil-Seifer and
Mataric [18] underscore that Socially Assistive Robotics
entails robots assisting humans through effective interac-
tion in tasks such as food delivery [49], healthcare [27], and
other tasks necessitating social interaction. However, many
of them only rely on simple rules or programs to achieve so-
cial interaction [27, 49]. The deployment of assistive robots
has also raised ethical and safety considerations, particu-
larly in terms of user autonomy, privacy, acceptance, trust,
etc. [5, 6, 9, 18]. The objective of our work is to devise an
effective algorithm for Socially Assistive Robotics to esti-
mate people’s goals and capabilities, thereby enabling com-
fortable and smart assistance.
Embodied Multi-agent Collaboration. A series of em-
bodied collaboration tasks have been developed recently
thanks to the development of Embodied AI simulators [13,
14, 32, 33, 41, 47, 48, 50]. However, these tasks always fo-
cus on some limited task completion, such as collaborative
navigation [34, 56] and collaborative furniture rearrange-
ment [28, 29]. Watch-and-Help [42] and NOPA [43] study
the cooperative tasks between two agents with the same ca-
pabilities. Our work focuses on the collaboration between
agents with different capabilities and study the strategic as-
sistance for the vulnerable group on household tasks.
Opponent Modeling. Opponent modeling [16, 19, 24],
a pivotal approach in multi-agent interaction tasks, lever-
ages a variety of methodologies such as Inverse Reinforce-
ment Learning [36], Bayesian methods [25, 26, 45, 52,
60], Deep Q-Networks (DQN) [23, 35], Variational Auto-
Encoders [39], Markov Decision Process [36], etc. This
technique is especially valuable in competitive settings like
games and strategic decision-making, where understand-
ing and anticipating an opponent’s behavior or unseen traits
(e.g., Theory of Mind modeling [44]) can significantly in-
fluence the outcome. It enables agents to predict future en-

vironmental state transitions and refine their strategies ac-
cordingly [58, 59]. Projects like Watch-and-Help [42] and
NOPA [43] have explored estimating a main agent’s goals
to improve coordination. Yet, these initiatives often over-
look the capabilities of the main agent, leading to a gap
in developing effective support strategies for those in need.
Our research addresses this gap by focusing on enhancing
the acceptance of AI assistance among users, as emphasized
in [9], highlighting the importance of aligning AI function-
alities with user needs and preferences. Additionally, we
propose to model the capability of the opponent and learn
a smart, adaptive, and empathetic helping policy for vul-
nerable people in a challenging 3D household interactive
environment with partial observation and high uncertainty.

3. The Smart Help Challenge
3.1. Problem Formulation

We model the interaction between the main agent and the
helper with a multi-agent Partially Observable Markov De-
cision Process (POMDP[11]), which is formally defined as
a tuple G = <S,A,O,R, T, n, γ>. S represents the state
space, including physical states and mental states. A is the
joint action space for n agents, whose local observations
compose observation space O. T (s′|s, a) denotes the tran-
sition probability. R(s, a) denotes the shared reward func-
tion and γ ∈ [0, 1) is the discount factor. Specifically, there
are n = 2 agents in our Smart Help Challenge, i.e., a main
agent and a helper agent. The objective is to train a helper
agent to assist the main agent in achieving goals, consider-
ing the emotional state of the main agent simultaneously.

In previous work, the reward for the helper agent is:

Rh(s, ah) = Rgh(s, ah) + βRgm(s, ah), (1)

where the β ∈ (0, 1) is a factor controlling the level of al-
truism of the helper. Rgh(s, ah) is the reward attributed to
the successful completion of the helper agent’s goal at state
s through action ah. Rgm(s, ah) is the same for the main
agent’s goal achievement. This formulation assumes equal
consideration for both agents when rewarding goal comple-
tion. However, when the helper fulfills a goal of the main
agent, it triggers emotional responses in the main agent. In-
tegrating this emotional component with Eq. (1), we have:

Rh(s, ah) = Rgh(s, ah)

+ β(Rgm(s, ah) + λeR
em(s, ah)),

(2)

where Rem(s, ah) means the reward correlated to the emo-
tions of the main agent when the helper does the action ah,
and λe is a hyper-parameter that controls the helper’s sensi-
tivity to the emotional states of the main agent. In our Smart
Help challenge, the helper agent’s role is solely to assist the
main agent in accomplishing his/her goals, without its own



goals. So we omit the term Rgh(s, ah) and set β = 1, lead-
ing to the helper’s reward as:

Rh(s, ah) = Rgm(s, ah) + λeR
em(s, ah). (3)

Indeed, this is what sets smart Help apart from other
assistance-related tasks. Through such design, we empha-
size that AI agents must possess the capacity to discern not
just how to aid humans, but also when their assistance is
truly needed and will be valued.

3.2. Challenge Implementation

We implement a tangible version of Smart Help in the
AI2THOR [32] simulator, which emphasizes adaptive help-
ing policy for individuals with various disabilities, as shown
in Fig. 1. Our new environment includes a main agent
that simulates human behavior in various assistive house-
hold tasks. The main agent, assigned with a new task and
a capability distribution at the beginning of each round, at-
tempts to complete the task with an expert planning policy,
which utilizes complete information to divide the task into
distinct goals and plan intentional actions for the goals. We
also implement a low-level planner that translates the inten-
tional action to a sequence of executable actions in the sim-
ulator, so as to enable the main agent to reach the target state
indicated by the input intentional action. The workflow of
the low-level planner is a loop involving the following steps:
1. Navigate to the relevant object by following the shortest

path determined by the object’s position and the room
layout; or be directly teleported to the target position.

2. Interact with the object in accordance with the goal.
However, actions taken by the main agent might fail due to
certain disabilities or the physical constraints of the scene.
Thus, the helper agent, as in Fig. 2, based on its symbolic
observations of the world, should infer both the goal and ca-
pability of the main agent and provide proactive assistance
with the bottleneck for the main agent. We will introduce
the detailed environment settings in the following part.
Object State. We define object state of object i as ei =
(typei, posi, wi, attri, pri), where:
• typei ∈ N denotes the type of object i with an index;
• posi ∈ R3 records the position of object i’s center;
• wi ∈ R represents the weight of object i;
• attri ∈ {0, 1}4+2 denotes the attributes of object i, in-

cluding its 4 status (i.e., whether it is picked up, opened,
cooked, and toggled on) and its visibility to the 2 agents;

• pri ∈ R signifies the type of the parent receptacle of
the object i through an index; here, the parent receptacle
means an object that serves as the container or the support
for another subordinate object.

Action Space. We employ intentional actions to construct
the action space, where intentional actions represent the tar-
get state that the agent wants to achieve. It is defined as
ai = (predicatei, ei) ∈ A; for instance, (PickUp, 3), where

3 is an object index, representing “Bread” in our environ-
ment. There are seven kinds of different intentional actions:
(Wait), (PickUp, ei), (Put, pri), (ToggleOn, ei), (ToggleOff,
ei), (Open, ei), and (Close, ei). In total, there are |A| = 373
possible intentional actions.
Agent Capability. The variance of agent capability is man-
ifested in the differences in the transition matrix, which
means that different agents will produce different outcomes
for the same action at the same state. For example, some
agents may be able to pick an object up, while others can-
not due to the its weight. Learning the matrix itself is im-
practical due to the vast size of the space. Instead, we se-
lect six parameters to represent the distinct characteristics
of different matrices. Therefore, the capability of agent i is
represented as ηi = (αi, βi, γi, δi, ϵi, ζi) where:
• The maximum height an agent can reach αi ∈ [0, 1] and

the maximum weight an agent can lift βi ∈ [0, 1] deter-
mine whether an agent can execute the action PickUp;

• γi, δi, ϵi, ζi ∈ [0, 1] respectively represent the agent’s
ability to complete the actions Open, Close, ToggleOn
and ToggleOff.

Agent State. We define the state of agent i as hi =
(ηi, posi, roti, ei, ai, succi), wherein:
• ηi ∈ C = [0, 1]6 denotes the capability of agent i,
• posi, roti ∈ R3 represent agent i’s position and rotation,
• ei ∈ E, ai ∈ A, and succi ∈ {0, 1} respectively repre-

sent the object held by agent i, the action undertaken by
agent i in the last step, and whether the last action was a
success or a failure.

World. The world is denoted as W = (S,A, T ), wherein:
• S = {ei, hj}i=1,...,No,j=1,2 represents the world state,

which encompasses the state of No objects and 2 agents;
• A = {ai} denotes the action space;
• T = P (S′|S,A; ηi) refers to the transition matrix con-

trolled by agent capability.
Task. Given our formulation of agent capabilities, we se-
lect three everyday tasks for practical implementations of
our challenge: Make Breakfast, Arrange Room, and Make
Coffee. These tasks respectively involves different capabil-
ities: (αi, βi, γi, δi, ϵi, ζi) for Cook Potato, (αi, βi, γi) for
Arrange Room, and (αi, βi, ϵi, ζi) for Make Coffee.
Goal. Upon setting a task, the agent need to identify several
key points (goals) that they must achieve. These goals are
hidden from the helper, but affect the helper’s reward for a
particular action. Each goal is defined by the target state of
the involved objects. The goal at time t is represented as:

gt = (target statet, et, prt) (4)

Target state includes Wait, Get, On, In, KeepOpen, Keep-
Close, KeepOn and KeepOff, e.g., “(In, Cup, Cabinet)”.
Observation Space. The proposed environment supports
both symbolic and visual observations. This dual-mode ob-
servation system enables the helper to acquire and refine
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Figure 2. This figure depicts the architecture of our smart help model and its interaction mechanisms with the environment. The model is
partitioned into two primary components: an opponent modeling module and a helping policy module. The opponent modeling module
is designed to estimate the goal and capability of the main agent. It adopts a sliding window paradigm and utilizes several MLP layers
to generate the state feature ξs. This feature is then processed by a feature extractor to derive the capability feature ξη and the goal
feature ξtg . The helping policy module is composed of two MLP layers to produce action decision and value estimation respectively.
During interaction with the environment, the helping model outputs an intentional action, representing the target state it aims to reach.
The environment employs a low-level planner to decompose the intentional action into a sequence of executable actions, which are then
processed by the AI2THOR simulator, guiding the assistant toward the intended state. Finally, the simulator provides a new observation as
feedback, triggering the next cycle of interaction.

helping behaviors in various contexts. Following previous
work [42, 43], we use symbolic observations containing
physical states of all perceivable objects and agents. Hid-
den states, like goals and capabilities, can not be observed.

4. Our Model

Our objective is to train a helper agent who can effectively
adapt to main agents with varying capabilities and goals.
There are two main challenges: 1) the challenge posed by
the environment (e.g., partial observation and occlusion),
and 2) the challenge posed by the task (i.e., how to estimate
the current goal gt and capabilities η of the main agent).
Given the observation o0:t, the action policy for the helper
is formulated as:

P (a|o0:t) =
∑

gt∈G,η∈C

P (a|gt, η, o0:t)P (gt, η|o0:t). (5)

Therefore, as depicted in Fig. 2, our model consists of:
1) an opponent modeling module to estimate the current
goal and capabilities of the main agent, i.e., P (gt, η|o0:t);
and 2) a helping policy module to learn the distribution of

the helper’s action conditioned on the predicted goal and
capabilities of the main agent, i.e., P (a|gt, η, o0:t).

The training of our model has two stages. In the first
stage, we train an opponent modeling module using the col-
lected main agent trajectories. This stage is crucial as it
enables the helper agent to understand and anticipate the
behavior of the main agent effectively. In the second stage,
we utilize the pre-trained opponent modeling module to
train the helping policy module, which handles dynamic and
complex tasks by interacting in our environment.

4.1. The Opponent Modeling Module

To train this module, we collect simulated trajectories in our
environment with the main agent following an expert policy
and the helper moving randomly, where each frame contains
the observations of the helper agent and the true labels of
the main agent’s goals and capabilities. Throughout data
collection, we utilize a main agent with various tasks and
capabilities and a helper executing random actions in the
environment. See more details in the supplementary.

We use a sliding window trick when inferring goals and
capabilities from the main agent’s trajectory since goals are
transient and typically persist for only a few steps. This



method enables examining a segment of the trajectory at
any given time, and sliding the window as new actions are
taken. It allows the helper agent to make more immediate
and relevant inferences about the main agent’s current goals
and capabilities, enhancing its adaptability and responsive-
ness. Formally, we have:

P (ηi, g
t|o0:t) ≈ P (ηi, g

t|ot−w:t), (6)

where w is the window size.
We use an object encoder and an agent encoder to extract

features from raw observations (details in supplementary).
Similar to the “class token” in [2], we prepend a learnable
embedding, which we call “object token” to the sequence
of object feature. We follow the usage of “class token” [2],
and only retain this object token to represent the object fea-
ture ξto after the transformer [54] layer (other tokens are re-
moved). This object feature ξto, together with the agent fea-
ture ξta, constitute the state feature ξts. As in Eq. (6), we use
a window size of w and the state features {ξt−w

s , · · · , ξts}
are fed into an MLP layer to obtain the final state feature
ξs. Furthermore, a feature extractor is employed to derive
the capability feature ξη and the target state feature ξtg of the
main agent. A transformer layer is utilized for the capabil-
ity feature. As for the goal feature ξtg , as detailed in Eq. (4),
one transformer layer is used for the target state feature, and
two MLP layers are employed for the features of the related
object and its target parent receptacle.

4.2. The Helping Policy Module

Our helping policy module has an actor-critic [55] archi-
tecture. At each time step t, given the current observation
ot, together with all the features ξη and ξtg from the oppo-
nent modeling module, the helper agent needs to learn the
helping policy πθ(a|ot, η, gt). We employ an MLP layer for
action selection (the “Policy MLP” in Fig. 2), coupled with
an LSTM network for context memorization. Meanwhile,
another MLP (the “Value MLP” in Fig. 2) is utilized for the
value network to estimate the value of the current state.

5. Experimental Setup
5.1. Two-stage Learning

We apply a two-stage training technique to train our model.
In the first stage, we use four auxiliary classifiers to respec-
tively train the capability feature ξη , target state feature,
object feature and parent receptacle feature (i.e., the goal
feature ξtg) in a supervised learning manner. These classi-
fiers are lightweight and efficient, utilizing MLPs, and are
trained using cross-entropy loss and the Adam optimizer,
with a learning rate of 1× 10−6 and a batch size of 32.

In the second stage, we remove these four classifiers,
keep the pre-trained opponent modeling module frozen, di-
rectly use the learnt opponent features ξη and ξtg , and focus

on the training of helping policy module. We use 20 kitchen
rooms for helping policy training and 10 for evaluation in
AI2-THOR [32]. The RLlib [15] framework and PPO [31]
algorithm are applied to train our helping policy module.
Unless otherwise stated, we use the default settings of RL-
lib. During training, the scene is randomly initialized with a
new room, a new task, and a new capability distribution of
the main agent, at each episode.

We apply a progressive learning technique to train the
help policy module. Firstly, we train the helper policy mod-
ule for 840 epochs, with a constant learning rate of 5×10−5

without weight decay and a batch size of 128, using the
reward defined in Eq. (3) with λe = 0.0. We find such
“warm-up” quite important in helping the helper agent to fa-
miliarize itself with basic skills to complete goals and tasks.
Secondly, we progressively train the model for 240 epochs
with a learning rate of 5 × 10−7 and λe = 1.0 in Eq. (3)
to enhance the smart help ability. In the evaluation phase,
we test the helper in 10 rooms (never used in training) and
with 14 different task-capability pairs, repeating three times
with different random seeds. We exclude 7 task-capability
pairs as they will enable the main agent to finish the task
independently. See supplementary for more details.

5.2. Reward

The reward of the helper is influenced by the goal gm and
the capability ηm of the main agent. During training, the
helper agent will get a reward of 20 after finishing a goal of
the main agent, corresponding to the first term in Eq. (3).
The second term Rem(s, ah) in Eq. (3) is influenced by the
capability of the main agent. Specifically, if the helper fin-
ishes a goal that the main agent can handle independently,
the helper will get a punishment: Rem(s, ah) = −30. For
every step, the helper agent will get a cost of -0.12 normally
and a cost of -0.5 if the action is illegal (e.g., attempting to
open something that can not be opened, such as an apple)
in the environment. If the task is not finished when the sce-
nario is ended, the helper will receive a punishment of -20.

5.3. Baselines

To make a fair comparison, the baselines are:
• Random. This helper randomly selects an action.
• End2end-λe=0.0. This model generates actions directly

from the observation with MLPs, trained with λe = 0.0 in
Eq. (3). We set learning rate to 5×10−5, batch size to 128.
The model is trained for 350 epochs before convergence.

• End2end-λe=1.0. Similar to End2end-λe=0.0, but with
λe = 1.0 in Eq. (3).

• MCTS. This model uses a Monte-Carlo Tree Search
(MCTS [3]) algorithm to search for an action with the
highest value, given a predicted goal from the opponent
modeling module. The value of each action is estimated
by the status of goal completion after rollout, discounted



by the number of steps taken to achieve this result.
• MCTS-heuristic. This model combines the MCTS model

with expert rules for the three selected tasks. Given a pre-
dicted goal from the opponent modeling module, it de-
cides on which action to simulate at a probability p = 0.5
by chance and p = 0.5 by a rule-based selection of the
next action to complete the goal.

• MCTSTG. This is an implementation to reproduce the
high-level planning policy of Watch-and-Help [42]. This
model knows the true goal of the main agent.

• MCTSRG. This model is almost the same as MCTSTG,
except that it follows a random goal.

• LLM. We use Large Language Model, i.e., gpt-3.5-turbo-
instruct [37] as the helper. We compose a prompt based
on the state observations from the AI2-THOR [32]. The
prompt is fed into the LLM at every step. We extract
the action decision generated from the LLM and evaluate
its actual effectiveness in the AI2-THOR simulator. See
supplementary for more details.

5.4. Ablation Study

To assess the contributions and efficacy of essential compo-
nents in our method, we derive the following variants:
• BaseModel. This model is the aforementioned helping

policy model with a pre-trained parameter-frozen oppo-
nent modeling module. As in Sec. 5.1, we set λe = 0.0
in Eq. (3), and train it for 840 epochs.

• BaseModel-w/o. Capability. Here we remove the capa-
bility embedding from the training of the helping policy.

• BaseModel-λe=1.0. This model is trained with λe = 1.0
in Eq. (3) for 840 epochs.

• BaseModel-PL-λe=0.0. Here, “PL” means the Progres-
sive Learning technique (detailed in Sec. 5.1), but with
λe = 0.0 in the second phase after the first warm-up
phase. We simply continue to train the BaseModel with
a smaller learning rate for 240 epochs (with no change in
λe = 0.0).

• BaseModel-PL-λe=1.0 (our full model). We use
the correct Progressive Learning technique (detailed in
Sec. 5.1), and change to λe = 1.0 in the second phase
after warming up the basic skills of the helper model.

5.5. Evaluation Metrics

To objectively evaluate an agent’s performance, we uti-
lize six distinct metrics, where Helping Necessity (HN) and
Helping Rate (HR) are first proposed in our work to better
assess the Smart Help policy. Let N denote the size of the
test scenarios, and let each scenario i be characterized by an
initial room state s0i and a goal of transitioning the room to
the target state s∗i . Assuming that both the main agent and
the helper require li steps (with a maximum of 30) to reach
the final state sli, we elaborate on these metrics as follows.
• Success Rate (SR and GSR). It includes Task-

conditioned Success Rate (SR) and Goal-conditioned Suc-
cess Rate (GSR), respectively representing the comple-
tion degree of tasks and goals. The SR is defined as
SR = 1

N

∑N
i=1 Ri, where Ri is 1 if the task is finished.

For task i, let Ngm
i

denote the effective goals completed
by the main agent, Ngh

i
represent the effective goals com-

pleted by the helper, and Nga
i

be all the effective goals
of the task. The goal-conditioned success for task i is:

GSi =
Ngm

i
+N

gh
i

Nga
i

. Hence, the overall GSR is defined as

GSR = 1
N

∑N
i=1 GSi. Ri = 1 if and only if GSi = 1.

• Helping Necessity (HN). This metric reflects the neces-
sity of the helper’s involvement. Only when the capabil-
ity required to finish the goal exceeds the main agent’s
capability, the helping is necessary. Let Ngh

nec,i
denote the

necessary goals completed by the helper, the Helping Ne-

cessity is then calculated as HN = 1
N

∑N
i=1

N
ghnec,i
N

gh
i

Ri,

where Ri = 1 if the task is completed, otherwise Ri = 0.
This assesses the helper’s ability to swiftly identify the
main agent’s capability and provide necessary assistance.

• Helping Rate (HR). HR represents the helper’s initiative
to help. HR =

Nhelp

Nneed help
, reflecting the probability of help-

ing when the main agent needs help.
• Episode Length (EL). We record the average episode

length to reflect the efficiency of helping policy. It is com-
puted as: EL = 1

N

∑N
i=1 li.

• Success-weighted by Path Length (SPL). We also in-
clude SPL to have a comprehensive evaluation. It is com-
puted as: SPL = 1

N

∑N
i=1 Ri

di

max(di,li)
, where Ri ∈

{0, 1} denotes whether the task is successfully completed,
di represents the minimum number of steps to finish the
task i, and li is the actual steps.

Beyond these key metrics, we also incorporate the aver-
age rewards as a metric for evaluation. For the Smart Help
challenge, we want to increase the HN and HR, while si-
multaneously descending the EL, as well as keeping the SR,
GSR, and SPL as high as possible.

6. Results and Analyses

Comparison with baselines. As shown in Tab. 1, our
full model exhibits superior performance compared with
all other baseline models without ground truth knowledge
of the main agent. The Random agent, selecting random
actions, and the MCTSRG model, following random goals,
both have minimal ability to provide appropriate help. The
superiority of our BaseModel compared to the End2End
model underscores the value of opponent modeling in the
context of assistance tasks. The LLM agent, although has
the shortest EL, falls short on other metrics compared with
our model. The MCTS-heuristic model, which incorporates
rule-based heuristics, outperforms the pure MCTS model.



Figure 3. Qualitative results of the learned smart help policy. In this example, the main agent moves directly to finish the goal “(In,
Potato, Microwave)”, but fails at the goal “(Open, Microwave)”. (a) The BaseModel-PL-λe=0.0 model not only helps the main agent
with the bottleneck “(Open, Microwave)”, but also continues to help with another goal “(ToggleOff, Microwave)”. (b) Our full model
BaseModel-PL-λe=1.0 only offer necessary help with the bottleneck “(Open, Microwave)”, and let the main agent to finish the rest goals
independently, which helping policy is smarter since it considers the needs and emotional feelings of the main agent.

However, our model achieves higher scores in SR, GSR,
HN, and HR, while maintaining similar values for EL and
SPL, indicating the effectiveness of its assistive action plan-
ning. The MCTSTG model, knowing the true goal of the
main agent, achieves the best performance among all the
models, serving as an upper bound for the task. Notably,
while it surpasses other models in most metrics, our model
demonstrates competitive performance, particularly in HN .
This suggests that our model achieves a balance by provid-
ing only necessary assistance and ensuring user comfort.
The gap between our model and the upper bound shows po-
tential for future research and further improvement.
Ablation analysis. Comparing the BaseModel with
BaseModel-λe=1.0, we find that setting λe = 0.0 can
augment the assisting actions of the helper. When com-
pared with BaseModel-w/o. Capability, we find that the
capability module contributes to the learning of the smart
helping policy. Comparing the BaseModel-PL-λe=0.0 with
BaseModel-PL-λe=1.0, we find that after the initial “warm-
up” of the basic skills, setting λe = 1.0 in the second
phase could greatly improve the HN while maintaining
competitive performances across other metrics. Thus, as
in Sec. 5.1, for our full model, in the BaseModel “warm-
up” training phase, the model learns how to complete the
goals and tasks, and the assistive actions are greatly encour-
aged; while in the second progressive learning phase, our
full model focuses on improving the assistance strategy of
the helper based on the main agent’s needs and feelings.
Qualitative Results. Fig. 3 demonstrates two helping cases
with a baseline model and our full model. The two mod-
els exhibit exploration behaviors in the scene and finally
learn to solve the bottleneck problem of the main agent.
In comparison, the BaseModel-PL-λe=0.0 only learns to

Method SR(↑) GSR(↑) HN(↑) HR(↑) Reward(↑) EL(↓) SPL(↑)

Random 0.074 0.364 0.054 0.057 -31.339 28.567 0.054
End2end-λe=0.0 0.267 0.441 0.149 0.315 -23.218 24.343 0.212
End2end-λe=1.0 0.067 0.372 0.057 0.057 -26.183 28.726 0.049
LLM 0.345 0.506 0.382 0.381 / 22.914 0.210
MCTS 0.178 0.482 0.266 0.328 / 26.743 0.126
MCTS-heuristic 0.274 0.528 0.355 0.400 / 24.692 0.199
MCTSTG 0.593 0.804 0.610 0.678 / 16.271 0.541
MCTSRG 0.043 0.348 0.015 0.015 / 28.950 0.042
BaseModel 0.419 0.515 0.408 0.412 -15.179 24.945 0.176
BaseModel-w/o. Capability 0.374 0.504 0.375 0.379 -13.852 23.748 0.235
BaseModel-λe=1.0 0.181 0.466 0.193 0.200 -17.185 27.448 0.122
BaseModel-PL-λe=0.0 0.488 0.556 0.455 0.496 -10.959 24.383 0.198
BaseModel-PL-λe=1.0 (Ours) 0.483 0.548 0.498 0.506 -10.625 24.650 0.200

Table 1. The quantitative results of our experiments. The last ten
environments in AI2-THOR are reserved for evaluation. The best
results are highlighted in bold. Note that we include some oracle
baselines and the upper bound performances are highlighted with
underlines.

help all the goals it successfully infers, while our full model
BaseModel-PL-λe=1.0 learns to decide whether to help
based on its inferred goals and capabilities, i.e., only to help
with “(Open, Microwave)”.

7. Conclusion

In this paper, we propose the novel challenge Smart Help
and build an environment and model that fosters smarter
and more harmonious interaction between humans and arti-
ficial agents. We hope our challenge, environment, dataset,
model and benchmark results will serve as valuable re-
sources to future studies of this important problem.
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